A292834 Numbers m, not powers of 2, such that the least prime factor of 2^m + 1 is congruent to 1 (mod m).
24, 48, 112, 160, 192, 272, 448, 496, 656, 688, 832, 896, 1088, 1152, 1168, 1328, 1360, 1408, 1472, 1520, 1664, 1744, 1920, 1984, 2176, 2304, 2432, 2560, 2688, 2752, 2816, 2944, 2960, 3056, 3072, 3200, 3328, 3520, 3664, 3712, 3776, 4672, 4864, 4928, 5120, 5376, 5552, 5888, 6144
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..71
Programs
-
Mathematica
Select[Range[200], And[! IntegerQ @ Log2 @ #, Mod[FactorInteger[2^# + 1][[1, 1]], #] == 1] &] (* Michael De Vlieger, Sep 24 2017 *) fQ[n_] := If[ OddQ@ n || IntegerQ@ Log2@ n || PrimeQ[2^n +1], False, Block[{p = 3}, While[PowerMod[2, n, p] +1 != p, p = NextPrime@ p]; Mod[p, n] == 1]] (* Robert G. Wilson v, Jan 01 2018 *)
-
PARI
isok(n) = my(e = valuation(n, 2)); (2^e != n) && ((vecmin(factor(2^n+1)[,1]) % n) == 1); \\ Michel Marcus, Nov 13 2017
Extensions
a(9)-a(15) from Robert G. Wilson v, Jan 01 2018
a(16)-a(49) from Robert G. Wilson v, Jan 02 2018
Comments