cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292866 a(n) = n! * [x^n] exp(n*(1 - exp(x))).

Original entry on oeis.org

1, -1, 2, -3, -20, 370, -4074, 34293, -138312, -2932533, 106271090, -2192834490, 32208497124, -206343936097, -7657279887698, 412496622532785, -12455477719752976, 260294034150380430, -2256541295745391542, -122593550603339550843, 8728842979656718306780
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2017

Keywords

Crossrefs

Main diagonal of A292861.
Cf. A242817.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          -(1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 25 2017
  • Mathematica
    Table[n!*SeriesCoefficient[E^(n*(1 - E^x)),{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 25 2017 *)
    a[n_] := BellB[n, -n]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 23 2021 *)
  • PARI
    {a(n) = sum(k=0, n, (-n)^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << k * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[j]}}
      ary
    end
    def A292866(n)
      (0..n).map{|i| A(-i, i)[-1]}
    end
    p A292866(20)
    

Formula

a(n) = exp(n) * Sum_{k>=0} (-n)^k*k^n/k!. - Ilya Gutkovskiy, Jul 13 2019
a(n) = Sum_{k=0..n} (-n)^k * Stirling2(n,k). - Seiichi Manyama, Jul 28 2019
a(n) = BellPolynomial(n, -n). - Peter Luschny, Dec 23 2021