cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A292978 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = k! * Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * T(n-1-i,k) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 3, 5, 1, 0, 2, 10, 15, 1, 0, 0, 6, 41, 52, 1, 0, 0, 6, 24, 196, 203, 1, 0, 0, 0, 24, 140, 1057, 877, 1, 0, 0, 0, 24, 60, 870, 6322, 4140, 1, 0, 0, 0, 0, 120, 480, 5922, 41393, 21147, 1, 0, 0, 0, 0, 120, 360, 5250, 45416, 293608, 115975
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   1,  1,  0,  0,  0, ...
   2,  3,  2,  0,  0, ...
   5, 10,  6,  6,  0, ...
  15, 41, 24, 24, 24, ...
		

Crossrefs

Columns k=0-4 give: A000110, A000248, A216507, A292889, A292979.
Rows n=0 gives A000012.
Main diagonal gives A000142.
Cf. A292973.

Programs

  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << f(k) * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}
      ary
    end
    def A292978(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A292978(20)

Formula

T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(j! * (n-k*j)!) for k > 0. - Seiichi Manyama, Jul 10 2022

A292908 Expansion of e.g.f. exp(x^3 * exp(-x)).

Original entry on oeis.org

1, 0, 0, 6, -24, 60, 240, -4830, 39984, -180936, -605520, 24616350, -318005160, 2385790836, -86488584, -350543790870, 6917020827360, -79778558317200, 357117438258144, 9237998478286134, -304182278908538040, 5166739059890655660, -48968796671246843160
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Crossrefs

Column k=3 of A292973.
Cf. A292889.

Programs

  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^3*exp(-x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-k)^(n-3*k)/(k!*(n-3*k)!)); \\ Seiichi Manyama, Jul 10 2022

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (-k)^(n-3*k)/(k! * (n-3*k)!). - Seiichi Manyama, Jul 10 2022

A292907 E.g.f.: exp(x^2 * exp(-x)).

Original entry on oeis.org

1, 0, 2, -6, 24, -140, 870, -5922, 45416, -381096, 3442410, -33382910, 345803172, -3801763836, 44156760830, -539962736250, 6929042527920, -93032248209872, 1303556965679826, -19018807375195638, 288341417011487420, -4534168069704168420
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Crossrefs

Column k=2 of A292973.
Cf. A216507.

Programs

  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^2*exp(-x))))

Formula

a(n) = (-1)^n * A216507(n).

A292969 Expansion of e.g.f. exp(x^4 * exp(-x)).

Original entry on oeis.org

1, 0, 0, 0, 24, -120, 360, -840, 21840, -365904, 3633840, -26619120, 239512680, -3943797000, 69258333144, -997361197560, 12707273822880, -179576670930720, 3215428464641760, -62865157116396384, 1167555972633639480, -20756362432008412440
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Crossrefs

Column k=4 of A292973.
Cf. A292979.

Programs

  • Maple
    S:= series(exp(x^4*exp(-x)),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Sep 28 2017
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^4*exp(-x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, (-k)^(n-4*k)/(k!*(n-4*k)!)); \\ Seiichi Manyama, Jul 10 2022

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (-k)^(n-4*k)/(k! * (n-4*k)!). - Seiichi Manyama, Jul 10 2022

A292970 Expansion of e.g.f. exp(x^5 * exp(-x)).

Original entry on oeis.org

1, 0, 0, 0, 0, 120, -720, 2520, -6720, 15120, 1784160, -39861360, 478906560, -4151192760, 29059190160, 43589505960, -9531493695360, 262248906060960, -4781455284432960, 68339552332044960, -719390244156842880, 105128808579670680, 293382376643359246320
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Crossrefs

Column k=5 of A292973.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^5 Exp[-x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 12 2018 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^5*exp(-x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\5, (-k)^(n-5*k)/(k!*(n-5*k)!)); \\ Seiichi Manyama, Jul 10 2022

Formula

a(n) = n! * Sum_{k=0..floor(n/5)} (-k)^(n-5*k)/(k! * (n-5*k)!). - Seiichi Manyama, Jul 10 2022
Showing 1-5 of 5 results.