cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A292981 Larger of bi-unitary amicable pair.

Original entry on oeis.org

126, 846, 1260, 3952, 5382, 8460, 6368, 8496, 13808, 10856, 14595, 17700, 51952, 49308, 53820, 83142, 62700, 71145, 73962, 97712, 107550, 88730, 108224, 131100, 153176, 168730, 196650, 203432, 195408, 287600, 309776, 306612, 365700, 332528, 399592, 419800
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to amicable numbers with bi-unitary sigma (A188999) instead of sigma (A000203).
Hagis found all the bi-unitary amicable pairs with smaller members below 10^6.
The smaller members are in A292980.
The terms are ordered according to their lesser counterparts.

Examples

			3952 is in the sequence since A188999(3608) - 3608 = 3952 and A188999(3952) - 3952 = 3608.
		

Crossrefs

Programs

  • Mathematica
    fun[p_,e_]:=If[Mod[e,2]==1,(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)];
    bsigma[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; Do[s = bsigma[n]; If[s > 2 n && bsigma[s - n] == s, Print[s-n]],{n,1,10000}] (* Amiram Eldar, Sep 29 2018 *)

A324708 Lesser of tri-unitary amicable numbers pair: numbers (m, n) such that tsigma(m) = tsigma(n) = m + n, where tsigma(n) is the sum of the tri-unitary divisors of n (A324706).

Original entry on oeis.org

114, 594, 1140, 5940, 8640, 10744, 12285, 13500, 44772, 60858, 62100, 67095, 67158, 79296, 79650, 79750, 118500, 142310, 143808, 177750, 185368, 298188, 308220, 356408, 377784, 462330, 545238, 600392, 608580, 609928, 624184, 635624, 643336, 643776, 669900
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

The larger counterparts are in A324709.

Examples

			114 is in the sequence since it is the lesser of the amicable pair (114, 126): tsigma(114) = tsigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; s[n_] := tsigma[n] - n; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, n]] ,{n,1,700000}]; seq

A348343 Smaller member of a noninfinitary amicable pair: numbers (k, m) such that nisigma(k) = m and nisigma(m) = k, where nisigma(k) is the sum of the noninfinitary divisors of k (A348271).

Original entry on oeis.org

336, 1792, 5376, 6096, 21504, 32004, 97536, 34062336, 64512000, 118008576, 30064771072
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The larger counterparts are in A348344.

Examples

			336 is a term since A348271(336) = 448 and A348271(448) = 336.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, n]], {n,1,10^4}]; seq

A357495 Lesser of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor.

Original entry on oeis.org

880, 10480, 20080, 24928, 42976, 69184, 110565, 252080, 267712, 489472, 566656, 569240, 603855, 626535, 631708, 687424, 705088, 741472, 786896, 904365, 1100385, 1234480, 1280790, 1425632, 1749824, 1993750, 2012224, 2401568, 2439712, 2496736, 2542496, 2573344, 2671856
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with nonsquarefree divisors.
The larger counterparts are in A357496.
Both members of each pair are necessarily nonsquarefree numbers.

Examples

			880 is a term since s(880) = 1136 and s(1136) = 880.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) - n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 2, 3*10^6}]; seq

A306867 Lesser of augmented bi-unitary amicable pair.

Original entry on oeis.org

434784, 1100176, 1252216, 1754536, 2166136, 2362360, 3064096, 6224890, 7626136, 7851256, 7950096, 9026235, 9581320, 12494856, 13324311, 14192080, 15218560, 15243424, 15422536, 19028296, 19466560, 19555360, 29180466, 36716680, 37542190, 40682824, 44044000, 44588896
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is an augmented bi-unitary amicable pair if bsigma(m) = bsigma(n) = m + n - 1, where bsigma(n) is the sum of bi-unitary divisors of n (A188999).
The larger members are in A306868.

Examples

			434784 is in the sequence since it is the lesser of the amicable pair (434784, 871585): bsigma(434784) = bsigma(871585) = 1306368 = 434784 + 871585 - 1.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_]:=If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); f[n_] := bsigma[n] - n + 1; s={}; Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, n]], {n, 1, 10^7}]; s

A306870 Lesser of reduced bi-unitary amicable pair.

Original entry on oeis.org

2024, 9504, 62744, 496320, 573560, 677144, 1000824, 1173704, 1208504, 1921185, 2140215, 2198504, 2312024, 2580864, 3847095, 4012184, 4682744, 5416280, 6618080, 9247095, 12500865, 12970880, 13496840, 14371104, 23939685, 25942784, 26409320, 28644704, 34093304
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is a reduced bi-unitary amicable pair if bsigma(m) = bsigma(n) = m + n + 1, where bsigma(n) is the sum of bi-unitary divisors of n (A188999).
The larger members are in A306871.

Examples

			2024 is in the sequence since it is the lesser of the amicable pair (2024, 2295): bsigma(2024) = bsigma(2295) = 4320 = 2024 + 2295 + 1.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_]:=If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); f[n_] := bsigma[n] - n - 1; s={}; Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, n]], {n, 1, 10^7}]; s

A319915 Smallest member of bi-unitary sociable quadruples.

Original entry on oeis.org

162, 1026, 1620, 10098, 10260, 41800, 51282, 100980, 107920, 512820, 1479006, 4612720, 4938136, 14790060, 14800240, 23168840, 28158165, 32440716, 55204500, 81128632, 84392560, 88886448, 209524210, 283604220, 325903500, 498215416, 572062304, 881697520
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2018

Keywords

Comments

The bi-unitary version of A090615.

Examples

			162 is in the sequence since the iterations of the sum of bi-unitary proper divisors function (A188999(n) - n) are cyclic with a period of 4: 162, 174, 186, 198, 162, ... and 162 is the smallest member of the quadruple.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_]:=If[Mod[e, 2]==1, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)];
    bs[n_] := If[n==1, 1, Times @@ (fun @@@ FactorInteger[n])]-n;seq[n_]:=NestList [bs, n,4][[2;;5]] ;aQ[n_] := Module[ {s=seq[n]}, n==Min[s] && Count[s,n]==1]; Do[If[aQ[n],Print[n]],{n,1,10^9}]
  • PARI
    fn(n) = {if (n==1, 1, f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f) - n;);}
    isok(n) = my(v = vector(5)); v[1] = n; for(k=2, 5, v[k] = fn(v[k-1])); (v[5] == n) && (vecmin(v) == n) && (#vecsort(v,,8)==4); \\ Michel Marcus, Oct 02 2018
    
  • PARI
    is(n) = my(c = n); for(i = 1, 3, c = fn(c); if(c <= n, return(0))); c = fn(c); c == n \\ uses Michel Marcus' fn David A. Corneth, Oct 02 2018

A333929 Lesser of recursive amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) = A333926(k) - k is the sum of proper recursive divisors of k.

Original entry on oeis.org

220, 366, 2620, 3864, 5020, 16104, 16536, 26448, 29760, 43524, 63020, 67344, 69615, 100485, 122265, 142290, 142310, 196248, 196724, 198990, 239856, 240312, 280540, 308620, 309264, 319550, 326424, 341904, 348840, 366792, 469028, 522405, 537744, 580320, 647190, 661776
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

The larger counterparts are in A333930.

Examples

			220 is a terms since A333926(220) - 220 = 284 and A333926(284) - 284 = 220.
		

Crossrefs

Analogous sequences: A002025, A002952 (unitary), A126165 (exponential), A126169 (infinitary), A292980 (bi-unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := recDivSum[n] - n; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^5}]; seq

A371419 Lesser member of Carmichael's variant of amicable pair: numbers k < m such that s(k) = m and s(m) = k, where s(k) = A371418(k).

Original entry on oeis.org

12, 48, 112, 160, 192, 448, 1984, 12288, 28672, 126976, 196608, 458752, 520192, 786432, 1835008, 2031616, 8126464, 8323072, 33292288, 536805376, 2147221504, 3221225472, 7516192768, 33285996544, 34359476224, 136365211648
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with the largest aliquot divisor of the sum of divisors (A371418) instead of the sum of aliquot divisors (A001065).
Carmichael (1921) proposed this function (A371418) for the purpose of studying periodic chains that are formed by repeatedly applying the mapping x -> A371418(x). The chains of cycle 2 are analogous to amicable numbers.
Carmichael noted that if q < p are two different Mersenne exponents (A000043), then 2^(p-1)*(2^q-1) and 2^(q-1)*(2^p-1) are an amicable pair. With the 51 Mersenne exponents that are currently known it is possible to calculate 51 * 50 / 2 = 1275 amicable pairs. (160, 189) is a pair that is not of this "Mersenne form". Are there any other pairs like it? There are no other such pairs with lesser member below a(26).
a(27) <= 8795019280384.
The greater counterparts are in A371420.

Examples

			12 is a term since A371418(12) = 14 > 12, and A371418(14) = 12.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; s[n_] := r[DivisorSigma[1, n]]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^6}]; seq
  • PARI
    f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
    lista(nmax) = {my(m); for(n = 1, nmax, m = f(n); if(m > n && f(m) == n, print1(n, ", ")));}

A348602 Smaller member of a nonexponential amicable pair: numbers (k, m) such that nesigma(k) = m and nesigma(m) = k, where nesigma(k) is the sum of the nonexponential divisors of k (A160135).

Original entry on oeis.org

198, 18180, 142310, 1077890, 1156870, 1511930, 1669910, 2236570, 2728726, 3776580, 4246130, 4532710, 5123090, 5385310, 6993610, 7288930, 8619765, 8754130, 8826070, 9478910, 10254970, 14426230, 17041010, 17257695, 21448630, 30724694, 34256222, 35361326, 37784810
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The larger counterparts are in A348603.

Examples

			198 is a term since A160135(198) = 204 and A160135(204) = 198.
		

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 1.7*10^6}]; seq
Showing 1-10 of 10 results.