A049455
Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9
Offset: 1
0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
The 0,1 version of Stern's diatomic array (cf. A002487) begins:
0,1,
0,1,1,
0,1,1,2,1,
0,1,1,2,1,3,2,3,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1,
...
- Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.
- J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
- W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 8204 terms from Reinhard Zumkeller)
- C. Giuli and R. Giuli, A primer on Stern's diatomic sequence, Fib. Quart., 17 (1979), 103-108, 246-248 and 318-320 (but beware errors).
- Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
- M. Shrader-Frechette, Modified Farey sequences and continued fractions, Math. Mag., 54 (1981), 60-63.
- N. J. A. Sloane, Stern-Brocot or Farey Tree
- Index entries for sequences related to Stern's sequences
-
import Data.List (transpose)
import Data.Ratio ((%), numerator, denominator)
a049455 n k = a049455_tabf !! (n-1) !! (k-1)
a049455_row n = a049455_tabf !! (n-1)
a049455_tabf = map (map numerator) $ iterate
(\row -> concat $ transpose [row, zipWith (+/+) row $ tail row]) [0, 1]
where u +/+ v = (numerator u + numerator v) %
(denominator u + denominator v)
-- Reinhard Zumkeller, Apr 02 2014
-
f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* Robert G. Wilson v, Nov 10 2019 *)
-
mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y));
newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1]));); concat(rowb, rowa[#rowa]);}
rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)););} \\ Michel Marcus, Apr 03 2019
More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000
A293160
Number of distinct terms in row n of Stern's diatomic array, A049456.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 13, 20, 31, 48, 78, 118, 191, 300, 465, 734, 1175, 1850, 2926, 4597, 7296, 11552, 18278, 28863, 45832, 72356, 114742, 181721, 287926, 455748, 722458, 1144370, 1813975, 2873751, 4553643, 7213620, 11432169, 18120733, 28716294, 45491133
Offset: 0
N. J. A. Sloane, Oct 12 2017, answering a question raised by Barry Carter in an email message. Barry Carter worked out the first 26 terms
Row 4 of A294442 contains eight fractions: 1/5, 4/5, 3/7, 4/7, 2/7, 2/7, 3/8, 5/8.
There are five distinct numerators, so a(4) = 5.
See
A135510 for the smallest positive missing number in each row.
-
A049456 := proc(n, k)
option remember;
if n =1 then
if k >= 0 and k <=1 then
1;
else
0 ;
end if;
elif type(k, 'even') then
procname(n-1, k/2) ;
else
procname(n-1, (k+1)/2)+procname(n-1, (k-1)/2) ;
end if;
end proc: # R. J. Mathar, Dec 12 2014
# A293160. This is not especially fast, but it will easily calculate the first 26 terms and confirm Barry Carter's values.
rho:=n->[seq(A049456(n,k),k=0..2^(n-1))];
w:=n->nops(convert(rho(n),set));
[seq(w(n),n=1..26)];
# Alternative program:
# S[n] is the list of fractions, written as pairs [i, j], in row n of Kepler's triangle; nc is the number of distinct numerators, and dc the number of distinct denominators
S[0]:=[[1, 1]]; S[1]:=[[1, 2]];
nc:=[1, 1]; dc:=[1, 1];
for n from 2 to 18 do
S[n]:=[];
for k from 1 to nops(S[n-1]) do
t1:=S[n-1][k];
a:=[t1[1], t1[1]+t1[2]];
b:=[t1[2], t1[1]+t1[2]];
S[n]:=[op(S[n]), a, b];
od:
listn:={};
for k from 1 to nops(S[n]) do listn:={op(listn), S[n][k][1]}; od:
c:=nops(listn); nc:=[op(nc), c];
listd:={};
for k from 1 to nops(S[n]) do listd:={op(listd), S[n][k][2]}; od:
c:=nops(listd); dc:=[op(dc), c];
od:
nc; # this sequence
dc; # A294444
# N. J. A. Sloane, Nov 20 2017
-
Length[Union[#]]& /@ NestList[Riffle[#, Total /@ Partition[#, 2, 1]]&, {1, 1}, 26] (* Jean-François Alcover, Mar 25 2020, after Harvey P. Dale in A049456 *)
Map[Length@ Union@ Numerator@ # &, #] &@ Nest[Append[#, Flatten@ Map[{#1/(#1 + #2), #2/(#1 + #2)} & @@ {Numerator@ #, Denominator@ #} &, Last@ #]] &, {{1/1}, {1/2}}, 21] (* Michael De Vlieger, Apr 18 2018 *)
-
from itertools import chain, product
from functools import reduce
def A293160(n): return n if n <= 1 else len({1}|set(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if y else (x[0]+x[1],x[1]),chain(k,(1,)),(1,0))) for k in product((False,True),repeat=n-2))) # Chai Wah Wu, Jun 20 2022
a(0) prepended and content related to Kepler's tree added from a duplicate entry (where the terms up to a(28) have been independently obtained by
Michael De Vlieger) by
Andrey Zabolotskiy, Dec 06 2024
A294446
The tree of Farey fractions (or the Stern-Brocot tree), read across rows (the fraction i/j is represented as the pair i,j).
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 2, 2, 3, 1, 1, 0, 1, 1, 4, 1, 3, 2, 5, 1, 2, 3, 5, 2, 3, 3, 4, 1, 1, 0, 1, 1, 5, 1, 4, 2, 7, 1, 3, 3, 8, 2, 5, 3, 7, 1, 2, 4, 7, 3, 5, 5, 8, 2, 3, 5, 7, 3, 4, 4, 5, 1, 1, 0, 1, 1, 6, 1, 5, 2, 9, 1, 4, 3, 11, 2, 7, 3, 10, 1, 3, 4, 11, 3, 8, 5, 13, 2, 5, 5, 12, 3, 7, 4, 9, 1, 2, 5, 9, 4
Offset: 0
This version of the tree begins as follows:
.................0/1..1/1
...............0/1..1/2..1/1
..........0/1..1/3..1/2..2/3..1/1
0/1..1/4..1/3..2/5..1/2..3/5..2/3..3/4..1/1
...
With the fractions written as pairs, the first few rows are:
[[0, 1], [1, 1]],
[[0, 1], [1, 2], [1, 1]],
[[0, 1], [1, 3], [1, 2], [2, 3], [1, 1]],
[[0, 1], [1, 4], [1, 3], [2, 5], [1, 2], [3, 5], [2, 3], [3, 4], [1, 1]],
[[0, 1], [1, 5], [1, 4], [2, 7], [1, 3], [3, 8], [2, 5], [3, 7], [1, 2], [4, 7,], [3, 5], [5, 8], [2, 3], [5, 7], [3, 4], [4, 5], [1, 1]]
...
- W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
- See A007305, A007306, A049455, A049456, etc. for many other references and links about the tree of Farey fractions (of which there are many versions).
See
A294442 for Kepler's tree of fractions.
For the number of distinct numerators in row n, see
A293165, and for the distinct denominators see
A293160.
-
# S[n] is the list of fractions, written as pairs [i, j], in row n of the triangle of Farey fractions
S[0]:=[[0, 1], [1, 1]];
for n from 1 to 6 do
S[n]:=[[0,1]];
for k from 1 to nops(S[n-1])-1 do
a:=S[n-1][k][1]+S[n-1][k+1][1];
b:=S[n-1][k][2]+S[n-1][k+1][2];
S[n]:=[op(S[n]), [a, b], S[n-1][k+1]];
od:
lprint(S[n]);
od:
Showing 1-3 of 3 results.
Comments