cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049455 Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9
Offset: 1

Views

Author

Keywords

Comments

Stern's diatomic array read by rows (version 4, the 0,1 version).
This sequence divided by A049456 gives another version of the Stern-Brocot tree.
Row n has length 2^n + 1.
Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.
Largest term of n-th row = A000045(n), Fibonacci numbers. - Reinhard Zumkeller, Apr 02 2014

Examples

			0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
The 0,1 version of Stern's diatomic array (cf. A002487) begins:
0,1,
0,1,1,
0,1,1,2,1,
0,1,1,2,1,3,2,3,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1,
...
		

References

  • Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.

Crossrefs

Row sums are A007051.
Cf. A000051 (row lengths), A293165 (distinct terms).

Programs

  • Haskell
    import Data.List (transpose)
    import Data.Ratio ((%), numerator, denominator)
    a049455 n k = a049455_tabf !! (n-1) !! (k-1)
    a049455_row n = a049455_tabf !! (n-1)
    a049455_tabf = map (map numerator) $ iterate
       (\row -> concat $ transpose [row, zipWith (+/+) row $ tail row]) [0, 1]
       where u +/+ v = (numerator u + numerator v) %
                       (denominator u + denominator v)
    -- Reinhard Zumkeller, Apr 02 2014
    
  • Mathematica
    f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* Robert G. Wilson v, Nov 10 2019 *)
  • PARI
    mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y));
    newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1]));); concat(rowb, rowa[#rowa]);}
    rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)););} \\ Michel Marcus, Apr 03 2019

Formula

Row 1 is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000

A293160 Number of distinct terms in row n of Stern's diatomic array, A049456.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 20, 31, 48, 78, 118, 191, 300, 465, 734, 1175, 1850, 2926, 4597, 7296, 11552, 18278, 28863, 45832, 72356, 114742, 181721, 287926, 455748, 722458, 1144370, 1813975, 2873751, 4553643, 7213620, 11432169, 18120733, 28716294, 45491133
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2017, answering a question raised by Barry Carter in an email message. Barry Carter worked out the first 26 terms

Keywords

Comments

Equivalently, a(n) is the number of distinct terms in row n of the Stern-Brocot sequence (A002487) when that sequence is divided into blocks of lengths 1, 2, 4, 8, 16, 32, ...
It would be nice to have a formula or recurrence, or even some bounds. Empirically, a(n) seems to be roughly 2^(2n/3) for the known values. Note that the first half of row n has about 2^(n-2) terms, and the maximal multiplicity is given by A293957(n), so 2^(n-2)/A293957(n) is a lower bound on a(n), which seems not too bad for the known values. - N. J. A. Sloane, Nov 04 2017
The multiset of terms in row n of Stern's diatomic array, with unique elements counted by a(n), is the same as the multiset of numerators of fractions in row n of Kepler's tree. Indeed, a fraction p/q is in row n-1 of Kepler's tree if and only if p/q and q/p are in row n of Calkin-Wilf tree. To form row n of Stern's diatomic array, one should take either numerators and denominators of fractions less than 1 or all numerators from Calkin-Wilf tree row n, in either case p/q and q/p contribute p and q. In Kepler's tree, a fraction p/q contributes p and q as numerators to the next row, i.e. row n. See A294442 for Kepler's tree and A294444 for the number of distinct denominators in it. - Andrey Zabolotskiy, Dec 05 2024

Examples

			Row 4 of A294442 contains eight fractions: 1/5, 4/5, 3/7, 4/7, 2/7, 2/7, 3/8, 5/8.
There are five distinct numerators, so a(4) = 5.
		

Crossrefs

See A135510 for the smallest positive missing number in each row.
Cf. A294442, A294444, A295783 (first differences).

Programs

  • Maple
    A049456 := proc(n, k)
        option remember;
        if n =1 then
            if k >= 0 and k <=1 then
                1;
            else
                0 ;
            end if;
        elif type(k, 'even') then
            procname(n-1, k/2) ;
        else
            procname(n-1, (k+1)/2)+procname(n-1, (k-1)/2) ;
        end if;
    end proc: # R. J. Mathar, Dec 12 2014
    # A293160. This is not especially fast, but it will easily calculate the first 26 terms and confirm Barry Carter's values.
    rho:=n->[seq(A049456(n,k),k=0..2^(n-1))];
    w:=n->nops(convert(rho(n),set));
    [seq(w(n),n=1..26)];
    # Alternative program:
    # S[n] is the list of fractions, written as pairs [i, j], in row n of Kepler's triangle; nc is the number of distinct numerators, and dc the number of distinct denominators
    S[0]:=[[1, 1]]; S[1]:=[[1, 2]];
    nc:=[1, 1]; dc:=[1, 1];
    for n from 2 to 18 do
    S[n]:=[];
    for k from 1 to nops(S[n-1]) do
    t1:=S[n-1][k];
    a:=[t1[1], t1[1]+t1[2]];
    b:=[t1[2], t1[1]+t1[2]];
    S[n]:=[op(S[n]), a, b];
    od:
    listn:={};
    for k from 1 to nops(S[n]) do listn:={op(listn), S[n][k][1]}; od:
    c:=nops(listn);  nc:=[op(nc), c];
    listd:={};
    for k from 1 to nops(S[n]) do listd:={op(listd), S[n][k][2]}; od:
    c:=nops(listd);  dc:=[op(dc), c];
    od:
    nc; # this sequence
    dc; # A294444
    # N. J. A. Sloane, Nov 20 2017
  • Mathematica
    Length[Union[#]]& /@ NestList[Riffle[#, Total /@ Partition[#, 2, 1]]&, {1, 1}, 26] (* Jean-François Alcover, Mar 25 2020, after Harvey P. Dale in A049456 *)
    Map[Length@ Union@ Numerator@ # &, #] &@ Nest[Append[#, Flatten@ Map[{#1/(#1 + #2), #2/(#1 + #2)} & @@ {Numerator@ #, Denominator@ #} &, Last@ #]] &, {{1/1}, {1/2}}, 21] (* Michael De Vlieger, Apr 18 2018 *)
  • Python
    from itertools import chain, product
    from functools import reduce
    def A293160(n): return n if n <= 1 else len({1}|set(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if y else (x[0]+x[1],x[1]),chain(k,(1,)),(1,0))) for k in product((False,True),repeat=n-2))) # Chai Wah Wu, Jun 20 2022

Extensions

a(28)-a(39) from Don Reble, Oct 16 2017
a(0) prepended and content related to Kepler's tree added from a duplicate entry (where the terms up to a(28) have been independently obtained by Michael De Vlieger) by Andrey Zabolotskiy, Dec 06 2024

A294446 The tree of Farey fractions (or the Stern-Brocot tree), read across rows (the fraction i/j is represented as the pair i,j).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 2, 2, 3, 1, 1, 0, 1, 1, 4, 1, 3, 2, 5, 1, 2, 3, 5, 2, 3, 3, 4, 1, 1, 0, 1, 1, 5, 1, 4, 2, 7, 1, 3, 3, 8, 2, 5, 3, 7, 1, 2, 4, 7, 3, 5, 5, 8, 2, 3, 5, 7, 3, 4, 4, 5, 1, 1, 0, 1, 1, 6, 1, 5, 2, 9, 1, 4, 3, 11, 2, 7, 3, 10, 1, 3, 4, 11, 3, 8, 5, 13, 2, 5, 5, 12, 3, 7, 4, 9, 1, 2, 5, 9, 4
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2017

Keywords

Comments

The first row contains the fractions 0/1, 1/1,
and thereafter we copy the previous row, interpolating (a+c)/(b+d) between each pair of adjacent fractions a/b, c/d.
This version of the Farey tree contains the fractions in the range [0,1].
If we just look at the numerators we get A049455 and if we just look at the denominators we get A086596.

Examples

			This version of the tree begins as follows:
.................0/1..1/1
...............0/1..1/2..1/1
..........0/1..1/3..1/2..2/3..1/1
0/1..1/4..1/3..2/5..1/2..3/5..2/3..3/4..1/1
...
With the fractions written as pairs, the first few rows are:
[[0, 1], [1, 1]],
[[0, 1], [1, 2], [1, 1]],
[[0, 1], [1, 3], [1, 2], [2, 3], [1, 1]],
[[0, 1], [1, 4], [1, 3], [2, 5], [1, 2], [3, 5], [2, 3], [3, 4], [1, 1]],
[[0, 1], [1, 5], [1, 4], [2, 7], [1, 3], [3, 8], [2, 5], [3, 7], [1, 2], [4, 7,], [3, 5], [5, 8], [2, 3], [5, 7], [3, 4], [4, 5], [1, 1]]
...
		

References

  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • See A007305, A007306, A049455, A049456, etc. for many other references and links about the tree of Farey fractions (of which there are many versions).

Crossrefs

See A294442 for Kepler's tree of fractions.
For the number of distinct numerators in row n, see A293165, and for the distinct denominators see A293160.

Programs

  • Maple
    # S[n] is the list of fractions, written as pairs [i, j], in row n of the triangle of Farey fractions
    S[0]:=[[0, 1], [1, 1]];
    for n from 1 to 6 do
    S[n]:=[[0,1]];
    for k from 1 to nops(S[n-1])-1 do
    a:=S[n-1][k][1]+S[n-1][k+1][1];
    b:=S[n-1][k][2]+S[n-1][k+1][2];
    S[n]:=[op(S[n]), [a, b], S[n-1][k+1]];
    od:
    lprint(S[n]);
    od:
Showing 1-3 of 3 results.