A293228 a(n) is the sum of proper divisors of n that are squarefree.
0, 1, 1, 3, 1, 6, 1, 3, 4, 8, 1, 12, 1, 10, 9, 3, 1, 12, 1, 18, 11, 14, 1, 12, 6, 16, 4, 24, 1, 42, 1, 3, 15, 20, 13, 12, 1, 22, 17, 18, 1, 54, 1, 36, 24, 26, 1, 12, 8, 18, 21, 42, 1, 12, 17, 24, 23, 32, 1, 72, 1, 34, 32, 3, 19, 78, 1, 54, 27, 74, 1, 12, 1, 40, 24, 60, 19, 90, 1, 18, 4, 44, 1, 96, 23, 46, 33, 36, 1, 72, 21, 72, 35, 50, 25, 12, 1, 24
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Maple
with(numtheory): seq(coeff(series(add(mobius(k)^2*k*x^(2*k)/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 120); # Muniru A Asiru, Oct 28 2018
-
Mathematica
a[n_] := Times @@ (1 + (f = FactorInteger[n])[[;; , 1]]) - If[AllTrue[f[[;;, 2]], # == 1 &], n, 0]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 09 2022 *) Table[Total[Select[Most[Divisors[n]],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Apr 20 2025 *)
-
PARI
A293228(n) = sumdiv(n, d, (d
Formula
a(n) = Sum_{d|n, dA008966(d)*d.
G.f.: Sum_{k>=1} mu(k)^2*k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Oct 28 2018
From Amiram Eldar, Oct 09 2022: (Start)
a(n) = 1 iff n is a prime.
a(n) = 3 iff n is a power of 2 greater than 2 (A020707).
Sum_{k=1..n} a(k) ~ (1/2 - 3/Pi^2) * n^2. (End)