cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A293305 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} (-1)^j*j*x^(j*i)).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, -3, 0, 1, 0, 1, -1, 1, -3, 0, -3, 0, 0, 1, -1, 1, -3, 4, 0, 4, 1, 0, 1, -1, 1, -3, 4, 0, 4, -3, 0, 0, 1, -1, 1, -3, 4, -5, 0, -3, 4, 0, 0, 1, -1, 1, -3, 4, -5, 0, -7, -2, -2, 0, 0, 1, -1, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0, -1, -1, -1, -1, ...
   0, -1,  1,  1,  1, ...
   0,  0,  0, -3, -3, ...
   0,  0,  0,  0,  4, ...
   0,  1, -3,  0,  0, ...
		

Crossrefs

Columns k=0..2 give A000007, A010815, A293072.
Rows n=0 gives A000012.
Main diagonal gives A293306.

Programs

  • Mathematica
    nmax = 12;
    col[k_] := col[k] = Product[1+Sum[(-1)^j*j*x^(i*j), {j, 1, k}], {i, 1, 2 nmax}] + O[x]^(2 nmax) // CoefficientList[#, x]&;
    A[n_, k_] := If[n == 0, 1, If[k == 0, 0, col[k][[n+1]]]];
    Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 21 2021 *)

A122792 Expansion of eta(q^2)^2/(eta(q)eta(q^3)) in powers of q.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 2, 0, 6, 4, 0, 10, 6, 0, 16, 9, 0, 24, 14, 0, 36, 20, 0, 52, 29, 0, 74, 42, 0, 104, 58, 0, 144, 80, 0, 198, 110, 0, 268, 148, 0, 360, 198, 0, 480, 264, 0, 634, 347, 0, 832, 454, 0, 1084, 592, 0, 1404, 764, 0, 1808, 982, 0, 2316, 1257, 0, 2952, 1598, 0
Offset: 0

Views

Author

Michael Somos, Sep 11 2006

Keywords

Crossrefs

A098151(n)=a(3n). A097197(n)=a(3n+1).
Cf. A293306.

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^2/(QP[q]*QP[q^3]) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2/eta(x+A)/eta(x^3+A), n))}

Formula

Euler transform of period 6 sequence [ 1, -1, 2, -1, 1, 0, ...].
G.f.: Product_{k>0} (1-x^k)^2/(1+x^k+x^(2k)). a(3n+2)=0.
G.f.: Product_{i>0} 1/(1 + Sum_{j>0} (-1)^j*j*q^(j*i)). - Seiichi Manyama, Oct 08 2017

A293389 Expansion of ((eta(q)eta(q^3))/eta(q^2)^2)^2 in powers of q.

Original entry on oeis.org

1, -2, 3, -8, 15, -24, 39, -64, 102, -152, 225, -336, 492, -700, 987, -1392, 1941, -2664, 3630, -4936, 6660, -8896, 11817, -15648, 20604, -26942, 35070, -45512, 58800, -75576, 96777, -123568, 157206, -199200, 251613, -316992, 398148, -498460, 622356, -775216
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2017

Keywords

Crossrefs

Main diagonal of A293388.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 - x^(3*k))^2 / ((1 + x^k)^4 * (1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2017 *)

Formula

G.f.: Product_{k>0} (((1 - x^k)*(1 - x^(3*k)))/(1 - x^(2*k))^2)^2.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2017

A385520 Expansion of Product_{k>0} ((1 - q^(2*k))*(1 - q^(6*k))^3)/((1 - q^k)*(1 - q^(3*k))*(1 - q^(4*k))*(1 - q^(12*k))).

Original entry on oeis.org

1, 1, 1, 3, 4, 5, 6, 9, 13, 16, 20, 27, 36, 44, 54, 69, 88, 107, 130, 162, 200, 240, 288, 351, 426, 507, 602, 723, 864, 1019, 1200, 1422, 1681, 1968, 2300, 2700, 3160, 3674, 4266, 4965, 5768, 6665, 7692, 8892, 10260, 11792, 13536, 15552, 17844, 20407
Offset: 0

Views

Author

James Sellers, Jul 01 2025

Keywords

Comments

a(n) is the number of partitions of the integer n wherein each even part can appear at most twice, while each odd part can appear once, thrice, or four times.
Also, a(n) is the unsigned version of the sequence given in A293306 (this can be seen by replacing q by -q in the generating function).

Examples

			For n = 4, the a(4) = 4 partitions are 4, 3+1, 2+2, and 1+1+1+1.  Note that there is one other partition of 4 which is NOT counted by a(4); that is the partition 2+1+1. This partition is NOT counted by a(4) because the odd part 1 appears twice, and this is not allowed from the description given above.
		

Crossrefs

Cf. A293306.

Programs

  • Maple
    p:=product((1-q^(2*k))*(1-q^(6*k))^3/((1-q^k)*(1-q^(3*k))*(1-q^(4*k))*(1-q^(12*k))), k=1..1000): s:=series(p,q,1000):
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k)) * (1 - x^(6*k))^3 / ((1 - x^k) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(12*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2025 *)
  • PARI
    my(N=50,q='q+O('q^N)); Vec((eta(-q)*eta(-q^3))/eta(q^2)^2) \\ Joerg Arndt, Jul 02 2025

Formula

G.f.: Product_{k>0} ((1 - q^(2*k))*(1 - q^(6*k))^3)/((1 - q^k)*(1 - q^(3*k))*(1 - q^(4*k))*(1 - q^(12*k))).
G.f.: (eta(-q)*eta(-q^3))/eta(q^2)^2.
a(n) ~ exp(2*Pi*sqrt(n)/3) / (6*n^(3/4)). - Vaclav Kotesovec, Jul 02 2025
Showing 1-4 of 4 results.