A293305 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} (-1)^j*j*x^(j*i)).
1, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, -3, 0, 1, 0, 1, -1, 1, -3, 0, -3, 0, 0, 1, -1, 1, -3, 4, 0, 4, 1, 0, 1, -1, 1, -3, 4, 0, 4, -3, 0, 0, 1, -1, 1, -3, 4, -5, 0, -3, 4, 0, 0, 1, -1, 1, -3, 4, -5, 0, -7, -2, -2, 0, 0, 1, -1, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 0, -1, -1, -1, -1, ... 0, -1, 1, 1, 1, ... 0, 0, 0, -3, -3, ... 0, 0, 0, 0, 4, ... 0, 1, -3, 0, 0, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
nmax = 12; col[k_] := col[k] = Product[1+Sum[(-1)^j*j*x^(i*j), {j, 1, k}], {i, 1, 2 nmax}] + O[x]^(2 nmax) // CoefficientList[#, x]&; A[n_, k_] := If[n == 0, 1, If[k == 0, 0, col[k][[n+1]]]]; Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 21 2021 *)
Comments