A293314
Least integer k such that k/2^n > (1+sqrt(5))/2 (the golden ratio).
Original entry on oeis.org
2, 4, 7, 13, 26, 52, 104, 208, 415, 829, 1657, 3314, 6628, 13255, 26510, 53020, 106040, 212079, 424158, 848316, 1696632, 3393264, 6786527, 13573053, 27146106, 54292212, 108584423, 217168846, 434337692, 868675384, 1737350767, 3474701533, 6949403066
Offset: 0
-
A293314:=n->ceil(2^n*(1+sqrt(5))/2): seq(A293314(n), n=0..40); # Wesley Ivan Hurt, Oct 06 2017
-
z = 120; r = GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293313 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293314 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293315 *)
-
a(n) = ceil(2^n*(1+sqrt(5))/2) \\ Altug Alkan, Oct 06 2017
A293315
The integer k that minimizes |k/2^n - r|, where r = golden ratio.
Original entry on oeis.org
2, 3, 6, 13, 26, 52, 104, 207, 414, 828, 1657, 3314, 6627, 13255, 26510, 53020, 106039, 212079, 424158, 848316, 1696632, 3393263, 6786526, 13573053, 27146106, 54292211, 108584423, 217168846, 434337692, 868675383, 1737350766, 3474701533, 6949403065
Offset: 0
-
[Floor((2^n*(1+Sqrt(5))+1)/2): n in [0..33]]; // Vincenzo Librandi, Oct 08 2017
-
A293315:=n->floor(1/2+2^n*(1+sqrt(5))/2): seq(A293315(n), n=0..40); # Wesley Ivan Hurt, Oct 06 2017
-
z = 120; r = GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293313 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293314 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293315 *)
-
a(n) = (2^n*(1+sqrt(5))+1)\2; \\ Altug Alkan, Oct 06 2017
A293319
Greatest integer k such that k/2^n < tau^2, where tau = (1+sqrt(5))/2 = golden ratio.
Original entry on oeis.org
2, 5, 10, 20, 41, 83, 167, 335, 670, 1340, 2680, 5361, 10723, 21446, 42893, 85787, 171575, 343150, 686301, 1372603, 2745207, 5490415, 10980830, 21961660, 43923321, 87846643, 175693286, 351386573, 702773147, 1405546295, 2811092590, 5622185180, 11244370361
Offset: 0
-
[Floor((2^n*(3+Sqrt(5)))/2): n in [0..33]]; // Vincenzo Librandi, Oct 08 2017
-
z = 120; r = 1+GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293319 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)
A293320
Least integer k such that k/2^n > tau^2, where tau = (1+sqrt(5))/2 = golden ratio.
Original entry on oeis.org
3, 6, 11, 21, 42, 84, 168, 336, 671, 1341, 2681, 5362, 10724, 21447, 42894, 85788, 171576, 343151, 686302, 1372604, 2745208, 5490416, 10980831, 21961661, 43923322, 87846644, 175693287, 351386574, 702773148, 1405546296, 2811092591, 5622185181, 11244370362
Offset: 0
-
[Ceiling((2^n*(3+Sqrt(5)))/2): n in [0..33]]; // Vincenzo Librandi, Oct 08 2017
-
z = 120; r = 1+GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293319 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)
A293321
The integer k that minimizes |k/2^n - tau^2|, where tau = (1+sqrt(5))/2 = golden ratio.
Original entry on oeis.org
3, 5, 10, 21, 42, 84, 168, 335, 670, 1340, 2681, 5362, 10723, 21447, 42894, 85788, 171575, 343151, 686302, 1372604, 2745208, 5490415, 10980830, 21961661, 43923322, 87846643, 175693287, 351386574, 702773148, 1405546295, 2811092590, 5622185181, 11244370361
Offset: 0
-
z = 120; r = 1+GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293319 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)
-
a(n) = (2^n*(3+sqrt(5))+1)\2; \\ Altug Alkan, Oct 08 2017
A293322
Greatest integer k such that k/2^n < 1/tau, where tau = (1+sqrt(5))/2 = golden ratio.
Original entry on oeis.org
0, 1, 2, 4, 9, 19, 39, 79, 158, 316, 632, 1265, 2531, 5062, 10125, 20251, 40503, 81006, 162013, 324027, 648055, 1296111, 2592222, 5184444, 10368889, 20737779, 41475558, 82951117, 165902235, 331804471, 663608942, 1327217884, 2654435769, 5308871538
Offset: 0
-
z = 120; r = -1+GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293322 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293323 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293324 *)
-
a(n) = 2^n*(sqrt(5)-1)\2; \\ Altug Alkan, Oct 08 2017
A293323
Least integer k such that k/2^n > 1/tau, where tau = (1+sqrt(5))/2 = golden ratio.
Original entry on oeis.org
1, 2, 3, 5, 10, 20, 40, 80, 159, 317, 633, 1266, 2532, 5063, 10126, 20252, 40504, 81007, 162014, 324028, 648056, 1296112, 2592223, 5184445, 10368890, 20737780, 41475559, 82951118, 165902236, 331804472, 663608943, 1327217885, 2654435770, 5308871539
Offset: 0
-
z = 120; r = -1+GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293322 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293323 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293324 *)
-
a(n) = ceil(2^(n-1)*(sqrt(5)-1)); \\ Altug Alkan, Oct 08 2017
A376448
a(n) = k if k is odd otherwise a(n) = k+1 and k = floor( 2^n*(1+sqrt(5))/2 ).
Original entry on oeis.org
1, 3, 7, 13, 25, 51, 103, 207, 415, 829, 1657, 3313, 6627, 13255, 26509, 53019, 106039, 212079, 424157, 848315, 1696631, 3393263, 6786527, 13573053, 27146105, 54292211, 108584423, 217168845, 434337691, 868675383, 1737350767, 3474701533, 6949403065, 13898806131, 27797612261, 55595224523
Offset: 0
An example for a pseudo Weyl sequence obtained from a(3):
{0, 1, 2, 3, 4, 5, 6, 7} * a(3) mod 2^3 = {0, 5, 2, 7, 4, 1, 6, 3}. (Without zero also part of A194868).
-
k[n_]:=Floor[2^n*GoldenRatio];Table[If[OddQ[k[n]],k[n],k[n]+1],{n,0,35}] (* James C. McMahon, Oct 20 2024 *)
-
a(n) = {my( m=floor(quadgen(5)<
Showing 1-8 of 8 results.
Comments