cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293490 a(n) = Sum_{k=0..n} binomial(2*k, k)*binomial(2*n-k, n).

Original entry on oeis.org

1, 4, 18, 84, 400, 1932, 9436, 46512, 231066, 1155660, 5813808, 29396952, 149305884, 761282032, 3894953640, 19987999696, 102847396416, 530446714812, 2741576339716, 14196136939600, 73631851898220, 382483602131400, 1989514312826400, 10361255764532400, 54020655931542300, 281933439875693424
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 10 2017

Keywords

Comments

Main diagonal of iterated partial sums array of central binomial coefficients (starting with the first partial sums).

Crossrefs

Programs

  • GAP
    A293490 := Concatenation([1], List([1..3*10^2],n -> Sum([0..n],k -> Binomial(2*k, k)*(Binomial(2*n - k, n))))); # Muniru A Asiru, Oct 15 2017
    
  • Mathematica
    Table[Sum[Binomial[2 k, k] Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/(Sqrt[1 - 4 x] (1 - x)^(n + 1)), {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 - 2 x/(1 + ContinuedFractionK[-x, 1, {k, 1, n}])), {x, 0, n}], {n, 0, 25}]
    CoefficientList[Series[1/(Sqrt[2 Sqrt[1-4 x]-1] Sqrt[1-4 x]),{x,0,25}],x] (* Alexander M. Haupt, Jun 24 2018 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, k)*binomial(2*n-k, n)); \\ Michel Marcus, Oct 15 2017

Formula

a(n) = [x^n] 1/(sqrt(1 - 4*x)*(1 - x)^(n+1)).
a(n) = [x^n] 1/((1 - x)^(n+1)*(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))), a continued fraction.
a(n) = 4^n*Gamma(n+1/2)*2F1(-n,n+1; 1/2-n; 1/4)/(sqrt(Pi)*Gamma(n+1)).
From Vaclav Kotesovec, Oct 16 2017: (Start)
D-finite with recurrence: 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-1)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2).
a(n) ~ 2^(4*n + 3/2) / (3^(n + 1/2) * sqrt(Pi*n)).
(End)
G.f.: 1/(sqrt(2*sqrt(1-4*x)-1)*sqrt(1-4*x)). - Alexander M. Haupt, Jun 24 2018