A373519
Expansion of e.g.f. exp(x/(1 - x^4)^(1/4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 31, 181, 631, 1681, 60481, 687961, 4379761, 19982161, 802740511, 13848694861, 131732390791, 873339798241, 38385869907841, 894783905472241, 11506538747852641, 101612306808695521, 4824806928717603871, 142148609212891008421
Offset: 0
-
nmax = 25; CoefficientList[Series[E^(x/(1 - x^4)^(1/4)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\4, binomial(n/4-1, k)/(n-4*k)!);
A351906
Expansion of e.g.f. exp(x * (1 - x^4)).
Original entry on oeis.org
1, 1, 1, 1, 1, -119, -719, -2519, -6719, -15119, 1784161, 19902961, 119655361, 518763961, 1815974161, -212497445159, -3472602456959, -29605333299359, -177764320560959, -844590032480159, 97992221659873921, 2116963290135836521, 23379513665735470321
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x^4))))
-
a(n) = n!*sum(k=0, n\5, (-1)^k*binomial(n-4*k, k)/(n-4*k)!);
-
a(n) = if(n<5, 1, a(n-1)-5!*binomial(n-1, 4)*a(n-5));
A373520
Expansion of e.g.f. exp(x/(1 - x^4)^(1/2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 143641, 1829521, 12501721, 59922721, 2173048021, 44315751481, 478799701381, 3492321094081, 116722067432881, 3290135175240481, 50242015215929521, 508061488330088641, 16418736123292904941, 585427887134915295241
Offset: 0
-
nmax = 25; CoefficientList[Series[E^(x/(1 - x^4)^(1/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\4, binomial(n/2-k-1, k)/(n-4*k)!);
A373521
Expansion of e.g.f. exp(x/(1 - x^4)^(3/4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 91, 541, 1891, 5041, 249481, 3424681, 24365881, 119821681, 4208219731, 96849813061, 1133147785771, 8728726799521, 251218306095121, 8116398738418321, 138787857114672241, 1523943014238675361, 39648007379230971211, 1599866285860593980461
Offset: 0
A293526
E.g.f.: exp(x^3/(1 - x^4)).
Original entry on oeis.org
1, 0, 0, 6, 0, 0, 360, 5040, 0, 60480, 3628800, 39916800, 19958400, 3113510400, 130767436800, 1318571654400, 3487131648000, 355687428096000, 12813639597158400, 126713646259200000, 1013709170073600000, 85161707377883136000, 2819368492175499264000
Offset: 0
E.g.f.: Product_{k>0} exp(x^(m*k-1)):
A088009 (m=2),
A293494 (m=3), this sequence (m=4).
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(x^3/(1-x^4))))
-
N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, exp(x^(4*k-1)))))
A293566
E.g.f.: Product_{m>=0} exp(-x^(4*m+1)).
Original entry on oeis.org
1, -1, 1, -1, 1, -121, 721, -2521, 6721, -378001, 5473441, -39972241, 199679041, -7005552841, 176899522801, -2186722497961, 17454339826561, -459473703430561, 16503993702423361, -306140370496394401, 3555223271216311681, -80917223353652470681
Offset: 0
E.g.f.: Product_{m>=0} exp(-x^(k*m+1)):
A293116 (k=1),
A293532 (k=2),
A293565 (k=3), this sequence (k=4).
-
seq(factorial(k) * coeftayl(product(exp(-x^(4*m + 1)),m = 0..k), x = 0, k),k = 0..50); # Muniru A Asiru, Oct 15 2017
-
CoefficientList[Series[E^(x/(x^4 - 1)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 13 2017 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(x/(x^4-1))))
-
N=66; x='x+O('x^N); Vec(serlaplace(1/prod(m=0, N, exp(x^(4*m+1)))))
A373541
Expansion of e.g.f. exp(x/(1 + x^4)).
Original entry on oeis.org
1, 1, 1, 1, 1, -119, -719, -2519, -6719, 347761, 5412961, 39861361, 199488961, -5448797639, -171814122479, -2172192782759, -17416977701759, 251989368889441, 15508068901698241, 302085533813309281, 3540741711640110721, -21311122660066333079
Offset: 0
Showing 1-7 of 7 results.