cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A305206 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, 1, 2, 9, 36, 190, 1070, 6797, 46942, 350901, 2806187, 23894662, 215598410, 2053090936, 20557071012, 215697357449, 2364810631734, 27023086395647, 321160376470277, 3962047673946906, 50648323260067319, 669819485900273336, 9150740338219903590, 128965789655207156299
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[n + k - 2, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k)^binomial(n+k-2,n-1).

A293551 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>=1} x^j/(j*(1 - x^j)^k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 141, 86, 22, 1, 1, 1, 9, 36, 105, 216, 331, 310, 160, 30, 1, 1, 1, 10, 45, 148, 357, 672, 855, 692, 282, 42, 1, 1, 1, 11, 55, 201, 554, 1232, 1982, 2214, 1483, 500, 56, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

A(n,k) is the Euler transform of j -> binomial(j+k-2,k-1) evaluated at n.

Examples

			Square array begins:
1,  1,   1,   1,    1,    1,  ...
1,  1,   1,   1,    1,    1,  ...
1,  2,   3,   4,    5,    6,  ...
1,  3,   6,  10,   15,   21,  ...
1,  5,  13,  26,   45,   71,  ...
1,  7,  24,  59,  120,  216,  ...
		

Crossrefs

Main diagonal gives A293554.
Cf. A007318, A096751 (a similar but different sequence).

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          binomial(d+k-2, k-1), d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Oct 17 2017
  • Mathematica
    Table[Function[k, SeriesCoefficient[E^(Sum[x^i/(i (1 - x^i)^k), {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: exp(Sum_{j>=1} x^j/(j*(1 - x^j)^k)).
For asymptotics of column k see comment from Vaclav Kotesovec in A255965.

A305205 a(n) = [x^n] exp(-Sum_{k>=1} x^k/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, -1, -2, -3, -4, 30, 274, 1841, 9358, 32463, -41557, -2265846, -28939286, -272101778, -2038274408, -10494221259, 9056975574, 1244820826687, 22703501504125, 299864024917632, 3221417281127823, 26849622543478562, 110101743392268978, -1810492304600468063
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[-Sum[x^k/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[(1 - x^k)^Binomial[n + k - 2, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} (1 - x^k)^binomial(n+k-2,n-1).

A305654 a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, 1, 4, 14, 65, 323, 1890, 12002, 83901, 630818, 5081318, 43546333, 395422430, 3788368227, 38151667046, 402516707510, 4436230390977, 50948789415297, 608433141666219, 7540823673023319, 96826154085714992, 1285991546051286085, 17640769457638701839, 249602608552024560609
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(2*binomial(n+k-2,n-1)-binomial(n+k-3,n-2)).

A305655 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, 1, 3, 13, 54, 290, 1674, 10857, 76398, 580230, 4706734, 40598349, 370694845, 3569027696, 36100349833, 382360758863, 4228730647420, 48716663849192, 583403253712747, 7248883337962522, 93291181556742684, 1241632098163126324, 17064777292709034968, 241874821482784132204
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[(1 + x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k)^(2*binomial(n+k-2,n-1)-binomial(n+k-3,n-2)).

A305255 a(n) = [x^n] exp(Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, -1, -1, -4, -3, 14, 240, 1686, 9479, 36761, 3412, -1951731, -27296124, -268495319, -2093667873, -11586874946, -3788945531, 1127535019748, 21900095232973, 297591401221473, 3270627818325128, 28116733997044842, 129815302615081267, -1568168714539146596, -59839621829784309343
Offset: 0

Views

Author

Ilya Gutkovskiy, May 28 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^k x^k/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[Product[1/(1 + x^k)^Binomial[n + k - 2, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 24}]

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 + x^k)^binomial(n+k-2,n-1).
Showing 1-6 of 6 results.