cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293692 Numbers z such that x^2 + y^7 = z^2 for positive integers x and y.

Original entry on oeis.org

12, 18, 33, 54, 126, 160, 272, 366, 375, 520, 531, 540, 594, 630, 756, 825, 945, 1028, 1044, 1094, 1350, 1372, 1506, 1536, 1575, 1980, 2050, 2219, 2304, 2619, 2940, 3250, 3500, 3645, 3906, 3925, 4097, 4224, 4390, 4625, 5500, 5844, 5988, 6048, 6192, 6283, 6422
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Let i, j and k are nonnegative integers, n is positive integer. As [(n^)^(7i+1) * (2n+1)^(7j + 3) * (n + 1)^(7k)]^2 + [n)^(2i) * (2n + 1)^(2j + 1) * (n + 1)^(2k)]^7 = [n^(7i) * (2n + 1)^(7j + 3) * (n+1)^(7k+1)]^2, so that number of form n^(7i) * (2n + 1)^(7j + 3) * (n+1)^(7k+1) is a term in sequence.
When (x, y, z) is solution of x^2 + y^3 = z^2 (i.e., z = A070745(n)), (x^(7i+1) * y^(7j + 2) * z^(7k)]^2, x^(2i) * y^(2j + 1) * z^(2k), x^(7i) * y^(7j + 2) * z^(7k+1) is solution of x^2 + y^7 = z^2.
When (x, y, z) is solution of x^2 + y^5 = z^2, (i.e., z = A293284(n)), x^(7i+1) * y^(7j + 1) * z^(7k), x^(2i) * y^(2j + 1) * z^(2k), x^(7i) * y^(7j + 1) * z^(7k+1) is solution of x^2 + y^7 = z^2.
When (x, y, z) is solution of x^2 + y^7 = z^2, (x^(7i+1) * y^(7j + 2) * z^(7k), x^(7i) * y^(j + 1) * z^(7k), x^(7i) * y^(7j +2) * z^(7k)) is also.
If x^2 + y^7 = z^2 then y^7 = z^2 - x^2 = (z - x)(z + x) and so (z - x, z + x) is a divisor pair of z^7. - David A. Corneth, May 24 2025

Examples

			4^2 + 2^7 = 12^2, 12 is a term.
31^2 + 2^7 = 33^2, 33 is a term.
		

Crossrefs

Programs

  • Mathematica
    z[n_] := Count[n^2 - Range[(n^2 - 1)^(1/7)]^7, _?(IntegerQ[Sqrt[#]] &)] > 0; Select[Range[6550], z]