A293769 Continued fraction expansion of the minimum ripple factor for a seventh-order, reflectionless, Chebyshev filter.
0, 4, 1, 1, 2, 1, 22, 2, 1, 1, 1, 2, 81, 4, 1, 1, 2, 20, 1, 1, 1, 5, 2, 5, 3, 4, 1, 2, 1, 6, 2, 1, 15, 1, 2, 1, 2, 1, 1, 23, 1, 1, 1, 4, 1, 42, 1, 11, 1, 1, 1, 7, 1, 1, 5, 30, 1, 2, 7, 5, 2, 6, 1, 1, 1, 5, 5, 5, 7, 2, 1, 8, 6, 5, 1, 1, 2, 36, 34, 1, 3, 1, 1, 2, 1, 3, 2, 1, 1, 1, 5, 4, 47, 1, 3, 2, 1, 2, 2, 1, 1, 7, 1, 3, 1
Offset: 0
Examples
1/(4 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(22 + 1/(2 + 1/(1 + 1/(1+...
References
- M. Morgan, Reflectionless Filters, Norwood, MA: Artech House, pp. 129-132, January 2017.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..9999
Crossrefs
Programs
-
Magma
R:= RealField(); ContinuedFraction(Sqrt(Exp(4*Argtanh(Exp(-14* Argsinh(Sqrt(Sin(Pi(R)/7)*Tan(Pi(R)/7)/2))))) - 1)); // G. C. Greubel, Feb 16 2018
-
Mathematica
ContinuedFraction[Sqrt[Exp[4 ArcTanh[Exp[-2*7*ArcSinh[Sqrt[1/2*Sin[Pi/7] Tan[Pi/7]]]]]] - 1], 130]
-
PARI
contfrac( sqrt(exp(4*atanh(exp(-14*asinh(sqrt(sin(Pi/7)*tan(Pi/7)/2))))) - 1) ) \\ G. C. Greubel, Feb 16 2018
Extensions
Offset changed by Andrew Howroyd, Aug 10 2024
Comments