cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159476 Expansion of e.g.f.: A(x) = exp( Sum_{n>=1} (n-1)!*x^n/n ).

Original entry on oeis.org

1, 1, 2, 8, 62, 862, 19492, 656224, 30739676, 1906807004, 151002453464, 14846381034784, 1772922018732328, 252631570039665832, 42329528274029082608, 8237406877267427867648, 1842215469973381977889808, 469160036709398319115207696, 134976328490030629922214893344
Offset: 0

Views

Author

Paul D. Hanna, Apr 15 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 62*x^4/4! + 862*x^5/5! + ...
log(A(x)) = x + x^2/2 + 2!*x^3/3 + 3!*x^4/4 + 4!*x^5/5 + 5!*x^6/6 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-i)*binomial(n-1, i-1)*(i-1)!^2, i=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 13 2019
  • Mathematica
    a:= CoefficientList[Series[Exp[Sum[(n - 1)!*x^n/n, {n, 1, 500}]], {x, 0, 35}], x]; Table[a[[n]]*(n - 1)!, {n, 1, 30}] (* G. C. Greubel, Jul 09 2018 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=1,n,(k-1)!*x^k/k)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(n-1)!*sum(k=1,n,(k-1)!*a(n-k)/(n-k)!))}

Formula

a(n) = (n-1)!*Sum_{k=1..n} (k-1)!*a(n-k)/(n-k)! for n > 0 with a(0)=1.
a(n) ~ (n-1)!^2. - Vaclav Kotesovec, Jul 10 2018

A293848 E.g.f.: exp(Sum_{n>=1} n^n*x^n).

Original entry on oeis.org

1, 1, 9, 187, 7033, 421341, 37025881, 4500154639, 723834652017, 148905928574713, 38133707320119241, 11894979981772431171, 4439223538343665367209, 1952818695816854110909717, 999887879061130705615605273, 589500991222520435444933020951
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^Sum[k^k*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
  • PARI
    {a(n) = n!*polcoeff(exp(sum(k=1, n, k^k*x^k)+x*O(x^n)), n)}

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k^(k+1)*a(n-k)/(n-k)! for n > 0.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Oct 18 2017
Showing 1-2 of 2 results.