cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293985 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-x))/(1-x)^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 13, 34, 73, 1, 5, 21, 73, 209, 501, 1, 6, 31, 136, 501, 1546, 4051, 1, 7, 43, 229, 1045, 4051, 13327, 37633, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 394353, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 4596553
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2017

Keywords

Examples

			Square array begins:
    1,    1,    1,    1,     1, ... A000012;
    1,    2,    3,    4,     5, ... A000027;
    3,    7,   13,   21,    31, ... A002061;
   13,   34,   73,  136,   229, ... A135859;
   73,  209,  501, 1045,  1961, ...
  501, 1546, 4051, 9276, 19081, ...
Antidiagonal rows begin as:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  7, 13;
  1, 4, 13, 34,  73;
  1, 5, 21, 73, 209, 501; - _G. C. Greubel_, Mar 09 2021
		

Crossrefs

Columns k=0..6 give: A000262, A002720, A000262(n+1), A052852(n+1), A062147, A062266, A062192.
Main diagonal gives A152059.
Similar table: A086885, A088699, A176120.

Programs

  • Magma
    function t(n,k)
      if n eq 0 then return 1;
      else return Factorial(n-1)*(&+[(j+k)*t(n-j,k)/Factorial(n-j): j in [1..n]]);
      end if; return t;
    end function;
    [t(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    t[n_, k_]:= t[n, k]= If[n==0, 1, (n-1)!*Sum[(j+k)*t[n-j,k]/(n-j)!, {j,n}]];
    T[n_,k_]:= t[k,n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    @CachedFunction
    def t(n,k): return 1 if n==0 else factorial(n-1)*sum( (j+k)*t(n-j,k)/factorial(n-j) for j in (1..n) )
    def T(n,k): return t(k,n-k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} (j+k)*A(n-j,k)/(n-j)! for n > 0.
A(0,k) = 1, A(1,k) = k+1 and A(n,k) = (2*n-1+k)*A(n-1,k) - (n-1)*(n-2+k)*A(n-2,k) for n > 1.
From Seiichi Manyama, Jan 25 2025: (Start)
A(n,k) = n! * Sum_{j=0..n} binomial(n+k-1,j)/(n-j)!.
A(n,k) = n! * LaguerreL(n, k-1, -1). (End)