cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294285 Sum of the larger parts of the partitions of n into two distinct parts with larger part squarefree.

Original entry on oeis.org

0, 0, 2, 3, 3, 5, 11, 18, 18, 13, 23, 28, 28, 34, 48, 63, 63, 80, 80, 89, 89, 99, 121, 144, 144, 131, 157, 143, 143, 157, 187, 218, 218, 234, 268, 303, 303, 321, 359, 398, 398, 418, 460, 481, 481, 458, 504, 551, 551, 551, 551, 576, 576, 629, 629, 684, 684
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Comments

Sum of the lengths of the distinct rectangles with squarefree length and positive integer width such that L + W = n, W < L. For example, a(14) = 34; the rectangles are 1 X 13, 3 X 11, 4 X 10. The sum of the lengths is then 13 + 11 + 10 = 34. - Wesley Ivan Hurt, Nov 01 2017

Examples

			10 can be partitioned into two distinct parts as follows: (1, 9), (2, 8), (3, 7), (4, 6). The squarefree larger parts are 6 and 7, which sum to a(10) = 13. - _David A. Corneth_, Oct 27 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n - i)*MoebiusMu[n - i]^2, {i, Floor[(n-1)/2]}], {n, 60}]
    Table[Total[Select[IntegerPartitions[n,{2}],DuplicateFreeQ[#]&&SquareFreeQ[#[[1]]]&][[;;,1]]],{n,60}] (* Harvey P. Dale, Aug 30 2025 *)
  • PARI
    first(n) = {my(res = vector(n, i, binomial(i, 2) - binomial(i\2+1, 2)), nsqrfr = List()); forprime(i=2, sqrtint(n), for(k = 1, n \ i^2, listput(nsqrfr, k*i^2))); listsort(nsqrfr, 1); for(i=1, #nsqrfr, for(m = nsqrfr[i]+1, min(2*nsqrfr[i]-1, n), res[m]-=nsqrfr[i])); res} \\ David A. Corneth, Oct 27 2017
    
  • PARI
    a(n) = sum(i=1, (n-1)\2, (n-i)*moebius(n-i)^2); \\ Michel Marcus, Nov 08 2017

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} (n - i) * mu(n - i)^2, where mu is the Möbius function (A008683).
a(n) = A211539(n + 1) - A294246(n). - David A. Corneth, Oct 27 2017