A294285 Sum of the larger parts of the partitions of n into two distinct parts with larger part squarefree.
0, 0, 2, 3, 3, 5, 11, 18, 18, 13, 23, 28, 28, 34, 48, 63, 63, 80, 80, 89, 89, 99, 121, 144, 144, 131, 157, 143, 143, 157, 187, 218, 218, 234, 268, 303, 303, 321, 359, 398, 398, 418, 460, 481, 481, 458, 504, 551, 551, 551, 551, 576, 576, 629, 629, 684, 684
Offset: 1
Examples
10 can be partitioned into two distinct parts as follows: (1, 9), (2, 8), (3, 7), (4, 6). The squarefree larger parts are 6 and 7, which sum to a(10) = 13. - _David A. Corneth_, Oct 27 2017
Links
Programs
-
Mathematica
Table[Sum[(n - i)*MoebiusMu[n - i]^2, {i, Floor[(n-1)/2]}], {n, 60}] Table[Total[Select[IntegerPartitions[n,{2}],DuplicateFreeQ[#]&&SquareFreeQ[#[[1]]]&][[;;,1]]],{n,60}] (* Harvey P. Dale, Aug 30 2025 *)
-
PARI
first(n) = {my(res = vector(n, i, binomial(i, 2) - binomial(i\2+1, 2)), nsqrfr = List()); forprime(i=2, sqrtint(n), for(k = 1, n \ i^2, listput(nsqrfr, k*i^2))); listsort(nsqrfr, 1); for(i=1, #nsqrfr, for(m = nsqrfr[i]+1, min(2*nsqrfr[i]-1, n), res[m]-=nsqrfr[i])); res} \\ David A. Corneth, Oct 27 2017
-
PARI
a(n) = sum(i=1, (n-1)\2, (n-i)*moebius(n-i)^2); \\ Michel Marcus, Nov 08 2017
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} (n - i) * mu(n - i)^2, where mu is the Möbius function (A008683).
Comments