A294362 E.g.f.: exp(Sum_{n>=1} sigma_2(n) * x^n).
1, 1, 11, 91, 1105, 13841, 230731, 3955771, 80483201, 1738065025, 41800101931, 1070731623611, 29804263624081, 878224530964561, 27672361220570795, 919409968480087771, 32304618825218432641, 1191168445737728717441, 46119903359374012564171
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..417
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
Crossrefs
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k))))
Formula
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A001157(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(k^2*x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
a(n) ~ (3*Zeta(3))^(1/8) * exp(2^(9/4) * Zeta(3)^(1/4) * n^(3/4) / 3^(3/4) - n^(1/4) / (2^(9/4) * 3^(5/4) * Zeta(3)^(1/4)) - n) * n^(n - 1/8) / 2^(7/8). - Vaclav Kotesovec, Sep 04 2018
Comments