cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294675 Numbers that are the sum of 5 nonzero squares in exactly 1 way.

Original entry on oeis.org

5, 8, 11, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 34, 36, 39, 42, 57, 60
Offset: 1

Views

Author

Robert Price, Nov 06 2017

Keywords

Comments

The sequence is likely to be finite and complete as the next term, if it exists, is > 50000.
From a proof by David A. Corneth on Nov 08 2017 in A294736: This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than one way to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[100], Length[Select[PowersRepresentations[#, 5, 2], #[[1]] > 0&]] == 1&] (* Jean-François Alcover, Feb 25 2019 *)
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i<1 || t<1, 0, b[n, i - 1, k, t] + If[i^2 > n, 0, b[n - i^2, i, k, t - 1]]]];
    T[n_, k_] := b[n, Sqrt[n] // Floor, k, k];
    Position[Table[T[n, 5], {n, 0, 100}], 1] - 1 // Flatten (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz in A243148 *)

Formula

A243148(a(n),5) = 1. - Alois P. Heinz, Feb 25 2019