cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A047700 Numbers that are the sum of 5 positive squares.

Original entry on oeis.org

5, 8, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Arlin Anderson (starship1(AT)gmail.com)

Keywords

Comments

Complement of A047701.

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
2009 is in the sequence as 2009 = 18^2 + 18^2 + 18^2 + 19^2 + 26^2.
2335 is in the sequence as 2335 = 19^2 + 19^2 + 20^2 + 22^2 + 27^2.
3908 is in the sequence as 3908 = 24^2 + 24^2 + 26^2 + 28^2 + 36^2. (End)
		

Crossrefs

Formula

a(n) = n + 12 for n >= 22. - David A. Corneth, Aug 04 2020

A243148 Triangle read by rows: T(n,k) = number of partitions of n into k nonzero squares; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 30 2014

Keywords

Examples

			T(20,5) = 2 = #{ (16,1,1,1,1), (4,4,4,4,4) } since 20 = 4^2 + 4 * 1^2 = 5 * 2^2.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  (...)
		

Crossrefs

Columns k = 0..10 give: A000007, A010052 (for n>0), A025426, A025427, A025428, A025429, A025430, A025431, A025432, A025433, A025434.
Row sums give A001156.
T(2n,n) gives A111178.
T(n^2,n) gives A319435.
T(n,k) = 1 for n in A025284, A025321, A025357, A294675, A295670, A295797 (for k = 2..7, respectively).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    T:= (n, k)-> b(n, isqrt(n), k):
    seq(seq(T(n, k), k=0..n), n=0..14);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(s-> `if`(s>n, 0, expand(x*b(n-s, i))))(i^2)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, isqrt(n))):
    seq(T(n), n=0..14);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i-1, k, t] + If[i^2 > n, 0, b[n-i^2, i, k, t-1]]]]; T[n_, k_] := b[n, Sqrt[n] // Floor, k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 06 2014, after Alois P. Heinz *)
    T[n_, k_] := Count[PowersRepresentations[n, k, 2], r_ /; FreeQ[r, 0]]; T[0, 0] = 1; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2016 *)
  • PARI
    T(n,k,L=n)=if(n>k*L^2, 0, k>n-3, k==n, k<2, issquare(n,&n) && n<=L*k, k>n-6, n-k==3, L=min(L,sqrtint(n-k+1)); sum(r=0,min(n\L^2,k-1),T(n-r*L^2,k-r,L-1), n==k*L^2)) \\ M. F. Hasler, Aug 03 2020

Formula

T(n,k) = [x^n y^k] 1/Product_{j>=1} (1-y*x^A000290(j)).
Sum_{k=1..n} k * T(n,k) = A281541(n).
Sum_{k=1..n} n * T(n,k) = A276559(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A292520(n).

A294524 Numbers that have a unique partition into a sum of five nonnegative squares.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 15
Offset: 1

Views

Author

Robert Price, Nov 01 2017

Keywords

Comments

This sequence is finite and complete. See the von Eitzen Link and the proof in A294675 stating that for n > 5408, the number of ways to write n as a sum of 5 squares (without allowing zero squares) is at least floor(sqrt(n - 101) / 8) = 9. Since this sequence relaxes the restriction of zero squares the number of representations for n > 5408 is at least nine. Then an inspection of n <= 5408 completes the proof.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    m = 5;
    r[n_] := Reduce[xx = Array[x, m]; 0 <= x[1] && LessEqual @@ xx && AllTrue[xx, NonNegative] && n == Total[xx^2], xx, Integers];
    For[n = 0, n < 20, n++, rn = r[n]; If[rn[[0]] === And, Print[n, " ", rn]]] (* Jean-François Alcover, Feb 25 2019 *)

A294736 Numbers that are the sum of 5 nonzero squares in exactly 2 ways.

Original entry on oeis.org

20, 38, 41, 45, 47, 48, 49, 50, 54, 55, 63, 66, 81, 105
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

Inspected values of n <= 50000.
This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than two ways to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete." - David A. Corneth, Nov 08 2017

Examples

			There are exactly two ways 20 is a sum of 5 nonzero squares. These are 1^2 + 1^2 + 1^2 + 1^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 = 20. Therefore 20 is in the sequence.
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[200], Length[Select[PowersRepresentations[#, 5, 2], #[[1]] > 0&]] == 2&] (* Jean-François Alcover, Nov 06 2020 *)

Formula

A243148(a(n),5) = 2. - Alois P. Heinz, Feb 26 2019

A295150 Numbers that have exactly two representations as a sum of five nonnegative squares.

Original entry on oeis.org

4, 5, 8, 9, 10, 11, 12, 14, 23, 24
Offset: 1

Views

Author

Robert Price, Nov 15 2017

Keywords

Comments

This sequence is finite and complete. See the von Eitzen Link and the proof in A294675 stating that for n > 5408, the number of ways to write n as a sum of 5 squares (without allowing zero squares) is at least floor(sqrt(n - 101) / 8) = 9. Since this sequence relaxes the restriction of zero squares, the number of representations for n > 5408 is at least nine. Then an inspection of n <= 5408 completes the proof.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Length[PowersRepresentations[n, 5, 2]] == 2;
    Select[Range[100], okQ] (* Jean-François Alcover, Feb 26 2019 *)

A295159 Smallest number with exactly n representations as a sum of five nonnegative squares.

Original entry on oeis.org

0, 4, 13, 20, 29, 37, 50, 52, 61, 74, 77, 85, 91, 101, 106, 118, 125, 131, 133, 139, 162, 157, 154, 166, 178, 194, 187, 205, 203, 202, 227, 211, 226, 235, 234, 269, 251, 275, 250, 266, 291, 274, 259, 283, 301, 325, 306, 298, 326, 334, 347, 322, 362, 447, 331
Offset: 1

Views

Author

Robert Price, Nov 15 2017

Keywords

Comments

Conjecture: a(448) does not exist, i.e., there is no number with exactly 448 such representations. - Robert Israel, Nov 15 2017

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1)...a(n) where a(n+1) is the first term > N
    V:= Array(0..N):
    for x[1] from 0 to floor(sqrt(N/5)) do
      for x[2] from x[1] while x[1]^2 + 4*x[2]^2 <= N do
        for x[3] from x[2] while x[1]^2 + x[2]^2 + 3*x[3]^2 <= N do
          for x[4] from x[3] while x[1]^2 + x[2]^2 + x[3]^2 + 2*x[4]^2 <= N do
            for x[5] from x[4] while x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 + x[5]^2 <= N do
               t:=  x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 + x[5]^2;
               V[t]:= V[t]+1;
    od od od od od:
    A:= Vector(max(V),-1):
    for i from 0 to N do if A[V[i]]=-1 then A[V[i]]:= i fi od:
    T:= select(t -> A[t]=-1, [$1..max(V)]):
    if T = [] then nmax:= max(V) else nmax:= T[1]-1 fi:
    convert(A[1..nmax],list); # Robert Israel, Nov 15 2017

Formula

A000174(a(n))=n. - Robert Israel, Nov 15 2017

A294737 Numbers that are the sum of 5 nonzero squares in exactly 3 ways.

Original entry on oeis.org

29, 32, 35, 37, 40, 43, 44, 46, 51, 52, 58, 65, 69, 73, 78, 87, 90
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

This sequence is likely finite and complete as the next term, if it exists, is > 50000.
From a proof by David A. Corneth on Nov 08 2017 in A294736: This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than eight ways to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

A294738 Numbers that are the sum of 5 nonzero squares in exactly 4 ways.

Original entry on oeis.org

62, 70, 71, 72, 75, 76, 82, 84, 89, 97, 108, 129, 132
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

This sequence is likely finite and complete as the next term, if it exists, is > 50000.
From a proof by David A. Corneth on Nov 08 2017 in A294736: This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than eight ways to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

A294739 Numbers that are the sum of 5 nonzero squares in exactly 5 ways.

Original entry on oeis.org

53, 56, 59, 61, 64, 67, 68, 74, 79, 93, 95, 96, 102, 111, 114, 153, 177
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

Theorem: There are no further terms. Proof (from a proof by David A. Corneth on Nov 08 2017 in A294736): The von Eitzen link states that if n > 5408 then the number of ways to write n as a sum of 5 squares is at least floor(sqrt(n - 101) / 8) = 9. For n <= 5408, terms have been verified by inspection. Hence this sequence is finite and complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{pr = PowersRepresentations[n, 5, 2]}, Length@ Select[pr, #[[1]] > 0 &] == 5]; Select[ Range@ 200, fQ] (* Robert G. Wilson v, Nov 17 2017 *)

A294740 Numbers that are the sum of 5 nonzero squares in exactly 6 ways.

Original entry on oeis.org

80, 86, 92, 98, 100, 103, 110, 113, 117, 121, 135, 145
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

Theorem: There are no further terms. Proof (from a proof by David A. Corneth on Nov 08 2017 in A294736): The von Eitzen link states that if n > 5408 then the number of ways to write n as a sum of 5 squares is at least floor(sqrt(n - 101) / 8) = 9. For n <= 5408, terms have been verified by inspection. Hence this sequence is finite and complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{pr = PowersRepresentations[n, 5, 2]}, Length@Select[pr, #[[1]] > 0 &] == 6]; Select[Range@200, fQ] (* Robert G. Wilson v, Nov 17 2017 *)
Showing 1-10 of 41 results. Next