cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181490 Numbers k such that 3*2^k-1 and 3*2^k+1 are twin primes (A001097).

Original entry on oeis.org

1, 2, 6, 18
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequences A181491 and A181492 list the corresponding primes.
No more terms below three million. - Charles R Greathouse IV, Mar 14 2011
Intersection of A002235 and A002253. - Jeppe Stig Nielsen, Mar 05 2018

Crossrefs

Programs

  • GAP
    Filtered([1..300],k->IsPrime(3*2^k-1) and IsPrime(3*2^k+1)); # Muniru A Asiru, Mar 11 2018
  • Maple
    a:=k->`if`(isprime(3*2^k-1) and isprime(3*2^k+1),k,NULL); seq(a(k),k=1..1000); # Muniru A Asiru, Mar 11 2018
  • Mathematica
    fQ[n_] := PrimeQ[3*2^n - 1] && PrimeQ[3*2^n + 1]; k = 1; lst= {}; While[k < 15001, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ] (* Robert G. Wilson v, Nov 05 2010 *)
    Select[Range[20],AllTrue[3*2^#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 24 2014 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

Equals { k | A007283(k) in A014574 } = { k | A153893(k) in A001359 }.

Extensions

Pari program repaired by Charles R Greathouse IV, Mar 14 2011

A075590 Smallest number with n distinct prime divisors which is the average of a twin prime pair.

Original entry on oeis.org

4, 6, 30, 420, 2310, 43890, 1138830, 17160990, 300690390, 15651726090, 239378649510, 12234189897930, 461282657605770, 19835154277048110, 693386350578511590, 37508276737897976010, 3338236629672919864890, 209580878166809177658630, 11465419967969569966774410
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Examples

			a(4) = 420 = 2^2*3*5*7, (419,421) is a twin prime pair. (210 = 2*3*5*7, 211 is prime but 209 is composite).
a(8) = 17160990 = 2*3*5*7*11*17*19*23 and 17160989 = p[1100977], 17160991 = p[1100978].
		

Crossrefs

Programs

  • Mathematica
    t=Table[0, {10}]; Do[s=Length[FactorInteger[Prime[n]+1]]; If[PrimeQ[Prime[n]+2] && s<11 && t[[s]]==0, t[[s]]=Prime[n]+1], {n, 1, 1200000}]; t

Extensions

More terms from Labos Elemer, Sep 27 2002
Corrected and extended by T. D. Noe, Nov 30 2004. a(9)-a(18) were found by testing all the numbers x with n distinct prime factors, x < 3 prime(n)# and both x-1 and x+1 prime.
Showing 1-2 of 2 results.