cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294732 Maximal diameter of the connected cubic graphs on 2*n vertices.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99
Offset: 2

Views

Author

Hugo Pfoertner, Dec 13 2017

Keywords

Examples

			a(5)=5 because there exists a unique graph (up to permutations) on 2*5=10 nodes, given by the following adjacency matrix
.
      1 2 3 4 5 6 7 8 9 10
   1  . 1 1 1 . . . . . .
   2  1 . 1 1 . . . . . .
   3  1 1 . . 1 . . . . .
   4  1 1 . . 1 . . . . .
   5  . . 1 1 . 1 . . . .
   6  . . . . 1 . 1 1 . .
   7  . . . . . 1 . . 1 1
   8  . . . . . 1 . . 1 1
   9  . . . . . . 1 1 . 1
  10  . . . . . . 1 1 1 .
.
that requires a shortest possible walk using 5 edges to get from node 1 to node 9.
From _Andrew Howroyd_, Dec 15 2017: (Start)
The following constructions are optimal (see theorem 5 of Caccetta et al.).
Pattern for odd n >= 10. Each additional 4 nodes increases diameter by 3.
      o         o         o         o
    / | \     / | \     / | \     / | \
   o--o  o---o  |  o---o  |  o---o  o--o
    \ | /     \ | /     \ | /     \ | /
      o         o         o         o
Pattern for even n >= 12. Each additional 4 nodes increases diameter by 3.
      o--o         o         o         o
    / |  | \     / | \     / | \     / | \
   o--o  |  o---o  |  o---o  |  o---o  o--o
    \ |  | /     \ | /     \ | /     \ | /
      o--o         o         o         o
(End)
		

Crossrefs

Apart from initial term, duplicate of A267528.

Programs

  • Mathematica
    Prepend[LinearRecurrence[{1, 1, -1}, {2, 3, 5}, 100], 1] (* Jean-François Alcover, Dec 27 2017 *)
  • PARI
    Vec(x^2*(1 + x + x^3) / ((1 - x)^2*(1 + x)) + O(x^100)) \\ Colin Barker, Dec 16 2017

Formula

From Andrew Howroyd, Dec 15 2017: (Start)
a(n) = (6*n - 11 - (-1)^n)/4 for n > 2.
a(n) = a(n-2) + 3 for n > 4. (End)
From Colin Barker, Dec 16 2017: (Start)
G.f.: x^2*(1 + x + x^3) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 5. (End)
a(n) = A267528(n-1). - Hugo Pfoertner, Oct 10 2018
E.g.f.: (6 + 2*x + x^2 + 3*(x - 2)*cosh(x) + (3*x - 5)*sinh(x))/2. - Stefano Spezia, Feb 20 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Dec 15 2017