A296525 Maximal diameter of connected k-regular graphs on 2*n nodes written as array T(n,k), 2 <= k < 2*n.
2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 2, 5, 5, 3, 2, 2, 2, 2, 1, 6, 6, 4, 3, 2, 2, 2, 2, 2, 1, 7, 8, 5, 5, 3, 2, 2, 2, 2, 2, 2, 1, 8, 9, 7, 5
Offset: 2
Examples
Table starts: Degree = 2 3 4 5 6 7 8 9 n= 4 : 2 1 n= 6 : 3 2 2 1 n= 8 : 4 3 2 2 2 1 n=10 : 5 5 3 2 2 2 2 1 ... See example in A296526 for a complete illustration of the irregular table.
Links
- L. Caccetta, W. F. Smyth Graphs of maximum diameter, Discrete Mathematics, Volume 102, Issue 2, 20 May 1992, Pages 121-141.
- M. Meringer, Regular Graphs.
- M. Meringer, GenReg, Generation of regular graphs.
- StackOverflow, Algorithm for diameter of graph?.
- Wikipedia, Distance (graph theory).
- Wikipedia, Floyd-Warshall algorithm.
Extensions
a(46) corresponding to the quintic graph on 16 nodes from Hugo Pfoertner, Dec 19 2017
Comments