cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294810 a(n) = Sum_{d|n} d^(n+2).

Original entry on oeis.org

1, 17, 244, 4161, 78126, 1686434, 40353608, 1074791425, 31381236757, 1000244144722, 34522712143932, 1283997101947770, 51185893014090758, 2177986570740006274, 98526126098761952664, 4722384497336874434561, 239072435685151324847154
Offset: 1

Views

Author

Seiichi Manyama, Nov 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Divisors[n]^(n+2)],{n,20}] (* Harvey P. Dale, Dec 23 2023 *)
  • PARI
    {a(n) = sigma(n, n+2)}
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+2)*x^k/(1-(k*x)^k)))
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>0} k^(k+2)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^k) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019