A275792 Decimal expansion of the sum of the reciprocals of the tetradecagonal numbers A051866.
1, 1, 5, 0, 9, 8, 2, 3, 6, 8, 0, 9, 4, 6, 7, 6, 3, 8, 6, 3, 6, 3, 6, 8, 9, 8, 9, 6, 9, 5, 2, 6, 7, 5, 0, 5, 8, 3, 0, 9, 6, 6, 7, 0, 9, 5, 5, 1, 8, 7, 4, 9, 1, 0, 9, 8, 3, 9, 6, 4, 5, 7, 8, 4, 5, 0, 5, 0, 4, 2, 6, 9, 1, 0, 9, 1, 3, 6, 6, 7, 4, 1, 4, 0, 9, 6, 6, 7, 5, 5, 3, 7, 0, 6, 3, 0, 5, 1, 5
Offset: 1
Examples
1.150982368094676386363689896952675058309...
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193. See (6/5)*v_6(1) on p. 192.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Lawrence Downey, Boon W. Ong, and James A. Sellers, Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Coll. Math. J., 39, no. 5 (2008), 391-394.
Programs
-
Magma
SetDefaultRealField(RealField(139)); R:= RealField(); (4*Log(2) + 3*Log(3) + Pi(R)*Sqrt(3))/10; // G. C. Greubel, Mar 25 2024
-
Mathematica
RealDigits[2*Log[2]/5 + 3*Log[3]/10 + Sqrt[3]*Pi/10, 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
-
PARI
2*log(2)/5 + 3*log(3)/10 + sqrt(3)*Pi/10 \\ Michel Marcus, Nov 09 2017
-
SageMath
numerical_approx((4*log(2) + 3*log(3) + pi*sqrt(3))/10, digits=139) # G. C. Greubel, Mar 25 2024
Formula
Sum_{n >= 1} 1/(n*(6*n - 5)) = 2*log(2)/5 + 3*log(3)/10 + sqrt(3)*Pi/10.
Comments