A140775 Numbers k > 1 such that p + k/p is prime for every prime p that divides k.
2, 6, 10, 22, 30, 34, 42, 58, 70, 78, 82, 102, 118, 130, 142, 190, 202, 210, 214, 274, 298, 310, 322, 330, 358, 382, 394, 442, 454, 462, 478, 510, 538, 562, 582, 610, 622, 658, 694, 714, 730, 742, 790, 838, 862, 922, 930, 970, 1002, 1038, 1042, 1110, 1138, 1198
Offset: 1
Keywords
Examples
The primes dividing 70 are 2, 5, 7. Now, 2 + 70/2 = 37; 5 + 70/5 = 19; 7 + 70/7 = 17. Since 37, 19 and 17 are each prime, then 70 is included in this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= t -> andmap(p -> isprime(p+t/p), numtheory:-factorset(t)): select(filter, [seq(i,i=2..2000,4)]); # Robert Israel, Jan 09 2024
-
Mathematica
fQ[n_] := Block[{p = First@ Transpose@ FactorInteger@ n}, Union@ PrimeQ[p + n/p] == {True}]; Select[ Range[2, 1221], fQ@# &] (* Robert G. Wilson v, May 30 2008 *) pnpQ[n_]:=AllTrue[#+n/#&/@Transpose[FactorInteger[n]][[1]],PrimeQ]; Select[ Range[2,1200],pnpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 15 2016 *)
Extensions
More terms from Robert G. Wilson v, May 30 2008
Definition edited by Robert Israel, Jan 09 2024
Comments