A295077 a(n) = 2*n*(n-1) + 2^n - 1.
0, 1, 7, 19, 39, 71, 123, 211, 367, 655, 1203, 2267, 4359, 8503, 16747, 33187, 66015, 131615, 262755, 524971, 1049335, 2097991, 4195227, 8389619, 16778319, 33555631, 67110163, 134219131, 268436967, 536872535, 1073743563, 2147485507
Offset: 0
Examples
a(4) = 39. The corresponding words are aabb, aabd, aadb, aadd, abab, abad, abba, abda, adab, adad, adba, adda, aaac, aaca, aacc, acaa, acac, acca, accc, baab, baad, baba, bada, bbaa, bdaa, caaa, caac, caca, cacc, ccaa, ccac, ccca, cccc, daab, daad, daba, dada, dbaa, ddaa.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..70 from Franck Maminirina Ramaharo)
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2)
Programs
-
Magma
[2*n*(n-1)+2^n-1 : n in [0..40]]; // Wesley Ivan Hurt, Nov 26 2017
-
Maple
A295077:=n->2*n*(n-1)+2^n-1; seq(A295077(n), n=0..70);
-
Mathematica
Table[2 n (n - 1) + 2^n - 1, {n, 0, 70}]
-
PARI
a(n) = 2*n*(n-1) + 2^n - 1; \\ Michel Marcus, Nov 14 2017
Formula
G.f.: (x + 2*x^2 - 7*x^3)/((1 - x)^3*(1 - 2*x)).
a(0)=0, a(1)=1, a(2)=7, a(3)=19; for n>3, a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4).
a(n) = 2*A131924(n-1) - 1 for n>0, a(0)=0.
a(n+1) - 2*a(n) + a(n-1) = A140504(n-1) for n>0, a(0)=0.
E.g.f.: exp(2*x) - (1 - 2*x^2)*exp(x). - G. C. Greubel, Oct 17 2018
Comments