cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295181 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x)^k.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 3, 4, 9, 0, 1, 0, 4, 6, 24, 44, 0, 1, 0, 5, 8, 45, 128, 265, 0, 1, 0, 6, 10, 72, 252, 880, 1854, 0, 1, 0, 7, 12, 105, 416, 1935, 6816, 14833, 0, 1, 0, 8, 14, 144, 620, 3520, 16146, 60032, 133496, 0, 1, 0, 9, 16, 189, 864, 5725, 31104, 153657, 589312, 1334961, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

A(n,k) is the k-fold exponential convolution of A000166 with themselves, evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x^2/2! + 2*k*x^3/3! + 3*k*(k + 2)*x^4/4! + 4*k*(5*k + 6)*x^5/5! + 5*k*(3*k^2 + 26*k + 24)*x^6/6! + ...
Square array begins:
  1,   1,    1,    1,    1,    1,  ...
  0,   0,    0,    0,    0,    0,  ...
  0,   1,    2,    3,    4,    5,  ...
  0,   2,    4,    6,    8,   10,  ...
  0,   9,   24,   45,   72,  105,  ...
  0,  44,  128,  252,  416,  620,  ...
		

Crossrefs

Columns k=0..5 give A000007, A000166, A087981, A137775, A383344, A383384.
Rows n=0..3 give A000012, A000004, A001477, A005843.
Main diagonal gives A295182.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x)^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    a(n, k) = n!*sum(j=0, n, (-k)^(n-j)*binomial(j+k-1, j)/(n-j)!); \\ Seiichi Manyama, Apr 25 2025

Formula

E.g.f. of column k: exp(-k*x)/(1 - x)^k.
From Seiichi Manyama, Apr 25 2025: (Start)
A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k-1,j)/(n-j)!.
A(0,k) = 1, A(1,k) = 0; A(n,k) = (n-1) * (A(n-1,k) + k*A(n-2,k)). (End)

A295183 a(n) = n! * [x^n] exp(n*x)/(1 - x)^n.

Original entry on oeis.org

1, 2, 18, 276, 5960, 165870, 5648832, 227507336, 10577029248, 557457222330, 32843470246400, 2139014862736092, 152592485390272512, 11833139429253625574, 991101777088623943680, 89164680959505831930000, 8575295241502192869343232, 877955050581430468997781234, 95337079570413427211596726272
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

The n-th term of the n-fold exponential convolution of A000522 with themselves.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/(1 - x)^n, {x, 0, n}], {n, 0, 18}]

Formula

a(n) ~ phi^(3*n + 1/2) * n^n / (5^(1/4) * exp(n/phi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 16 2017
a(n) = (-1)^n*n!*Laguerre(n,-2*n,n). - Ilya Gutkovskiy, May 24 2018

A383379 a(n) = n! * Sum_{k=0..n} (-n)^(n-k) * binomial(n+k,n)/(n-k)!.

Original entry on oeis.org

1, 1, 4, 21, 176, 1765, 22464, 331177, 5692672, 110286441, 2394828800, 57389046781, 1507401363456, 43018690418509, 1326170009092096, 43905977120300625, 1553942522589937664, 58544111242378404433, 2339326913228257886208, 98816004834223734304741
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Main diagonal of A383341.
Cf. A295182.

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (-n)^(n-k)*binomial(n+k, k)/(n-k)!);

Formula

a(n) = n! * [x^n] exp(-n*x) / (1-x)^(n+1).
a(n) ~ phi^(3*n + 3/2) * n^n / (5^(1/4) * exp(phi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 25 2025
Showing 1-3 of 3 results.