A295182
a(n) = n! * [x^n] exp(-n*x)/(1 - x)^n.
Original entry on oeis.org
1, 0, 2, 6, 72, 620, 8640, 122346, 2156672, 41367672, 905126400, 21646532270, 570077595648, 16268377195044, 502096929431552, 16629319748711250, 588938142209310720, 22196966267762213744, 887352465220427317248, 37496112562144553167062, 1670071417348195942400000, 78195398849926292810318940
Offset: 0
-
S:= series((exp(-x)/(1-x))^n,x,30):
seq(n!*coeff(S,x,n),n=0..29); # Robert Israel, Nov 16 2017
-
Table[n! SeriesCoefficient[Exp[-n x]/(1 - x)^n, {x, 0, n}], {n, 0, 21}]
A383344
Expansion of e.g.f. exp(-4*x) / (1-x)^4.
Original entry on oeis.org
1, 0, 4, 8, 72, 416, 3520, 31104, 316288, 3525632, 43117056, 572195840, 8191304704, 125761056768, 2060841582592, 35894401335296, 662066514984960, 12890305925218304, 264155723747688448, 5682905054074109952, 128051031032232411136, 3015653024970577018880
Offset: 0
A383384
Expansion of e.g.f. exp(-5*x) / (1-x)^5.
Original entry on oeis.org
1, 0, 5, 10, 105, 620, 5725, 52950, 571025, 6686200, 85871925, 1193029250, 17846277625, 285737086500, 4874590170125, 88245858436750, 1689282139310625, 34088182903910000, 723088091207873125, 16083522103093616250, 374280288623526655625, 9093957982779894737500
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[-5x]/(1-x)^5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 04 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-5*x)/(1-x)^5))
A383341
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k,j)/(n-j)!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 24, 1, 1, 5, 16, 53, 120, 1, 1, 6, 21, 88, 309, 720, 1, 1, 7, 26, 129, 568, 2119, 5040, 1, 1, 8, 31, 176, 897, 4288, 16687, 40320, 1, 1, 9, 36, 229, 1296, 7317, 36832, 148329, 362880, 1, 1, 10, 41, 288, 1765, 11296, 67365, 354688, 1468457, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
6, 11, 16, 21, 26, 31, 36, ...
24, 53, 88, 129, 176, 229, 288, ...
120, 309, 568, 897, 1296, 1765, 2304, ...
720, 2119, 4288, 7317, 11296, 16315, 22464, ...
-
a(n,k) = n!*sum(j=0, n, (-k)^(n-j)*binomial(j+k, j)/(n-j)!);
Showing 1-4 of 4 results.
Comments