cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A295181 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x)^k.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 3, 4, 9, 0, 1, 0, 4, 6, 24, 44, 0, 1, 0, 5, 8, 45, 128, 265, 0, 1, 0, 6, 10, 72, 252, 880, 1854, 0, 1, 0, 7, 12, 105, 416, 1935, 6816, 14833, 0, 1, 0, 8, 14, 144, 620, 3520, 16146, 60032, 133496, 0, 1, 0, 9, 16, 189, 864, 5725, 31104, 153657, 589312, 1334961, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

A(n,k) is the k-fold exponential convolution of A000166 with themselves, evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x^2/2! + 2*k*x^3/3! + 3*k*(k + 2)*x^4/4! + 4*k*(5*k + 6)*x^5/5! + 5*k*(3*k^2 + 26*k + 24)*x^6/6! + ...
Square array begins:
  1,   1,    1,    1,    1,    1,  ...
  0,   0,    0,    0,    0,    0,  ...
  0,   1,    2,    3,    4,    5,  ...
  0,   2,    4,    6,    8,   10,  ...
  0,   9,   24,   45,   72,  105,  ...
  0,  44,  128,  252,  416,  620,  ...
		

Crossrefs

Columns k=0..5 give A000007, A000166, A087981, A137775, A383344, A383384.
Rows n=0..3 give A000012, A000004, A001477, A005843.
Main diagonal gives A295182.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x)^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    a(n, k) = n!*sum(j=0, n, (-k)^(n-j)*binomial(j+k-1, j)/(n-j)!); \\ Seiichi Manyama, Apr 25 2025

Formula

E.g.f. of column k: exp(-k*x)/(1 - x)^k.
From Seiichi Manyama, Apr 25 2025: (Start)
A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k-1,j)/(n-j)!.
A(0,k) = 1, A(1,k) = 0; A(n,k) = (n-1) * (A(n-1,k) + k*A(n-2,k)). (End)

A383383 Expansion of e.g.f. exp(-4*x) / (1-x)^5.

Original entry on oeis.org

1, 1, 6, 26, 176, 1296, 11296, 110176, 1197696, 14304896, 186166016, 2620022016, 39631568896, 640971452416, 11034441916416, 201411030081536, 3884642996289536, 78929236862140416, 1684881987266215936, 37695662812132212736, 881964287274876665856, 21536903057742987001856
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Column k=4 of A383341.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-4*x)/(1-x)^5))

Formula

a(n) = n! * Sum_{k=0..n} (-4)^(n-k) * binomial(k+4,4)/(n-k)!.
a(0) = a(1) = 1; a(n) = n*a(n-1) + 4*(n-1)*a(n-2).
a(n) = A383344(n+2)/(4*(n+1)).
a(n) ~ sqrt(2*Pi) * n^(n + 9/2) / (24*exp(n+4)). - Vaclav Kotesovec, Apr 25 2025

A383378 Expansion of e.g.f. exp(-3*x) / (1-x)^4.

Original entry on oeis.org

1, 1, 5, 21, 129, 897, 7317, 67365, 692577, 7849953, 97199109, 1304688789, 18863836065, 292198665249, 4826470920021, 84669407740773, 1571901715253313, 30786460730863425, 634323280633460613, 13714611211502376597, 310448651226154786881, 7342298348439393120321
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Column k=3 of A383341.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-3*x)/(1-x)^4))

Formula

a(n) = n! * Sum_{k=0..n} (-3)^(n-k) * binomial(k+3,3)/(n-k)!.
a(0) = a(1) = 1; a(n) = n*a(n-1) + 3*(n-1)*a(n-2).
a(n) = A137775(n+2)/(3*(n+1)).
a(n) ~ sqrt(2*Pi) * n^(n + 7/2) / (6*exp(n+3)). - Vaclav Kotesovec, Apr 25 2025

A383380 Expansion of e.g.f. exp(-2*x) / (1-x)^4.

Original entry on oeis.org

1, 2, 8, 40, 248, 1808, 15136, 142784, 1496960, 17254144, 216740864, 2945973248, 43065951232, 673626675200, 11224114860032, 198447384666112, 3710328985124864, 73136238041563136, 1515739708283944960, 32947698735175172096, 749499782353468522496, 17806903161183314378752
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-2*x)/(1-x)^4))

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A000255.
a(n) = n! * Sum_{k=0..n} (-2)^(n-k) * binomial(k+3,3)/(n-k)!.
a(0) = 1, a(1) = 2; a(n) = (n+1)*a(n-1) + 2*(n-1)*a(n-2).
a(n) ~ sqrt(Pi) * n^(n + 7/2) / (3*sqrt(2)*exp(n+2)). - Vaclav Kotesovec, Apr 25 2025
Showing 1-4 of 4 results.