cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295288 Binomial transform of the centered triangular numbers A005448.

Original entry on oeis.org

1, 5, 19, 62, 184, 512, 1360, 3488, 8704, 21248, 50944, 120320, 280576, 647168, 1478656, 3350528, 7536640, 16842752, 37421056, 82706432, 181927936, 398458880, 869269504, 1889533952, 4093640704, 8841592832, 19042140160, 40902852608
Offset: 0

Views

Author

Keywords

Comments

The sequence is column 3 of triangle in A207630.
First difference is given by A055818(n+3,3) for n > 0.

Examples

			a(0) = (3*0^2 + 9*0 + 8)*2^(-3) = 8/8 = 1.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Magma
    I:=[1,5,19]; [n le 3 select I[n] else 6*Self(n-1) -12*Self(n-2) +8*Self(n-3): n in [1..40]]; // G. C. Greubel, Oct 17 2018
  • Maple
    A:=n->(3*n^2+9*n+8)*2^(n-3); seq(A(n), n=0..70);
  • Mathematica
    Table[(3 n^2 + 9 n + 8) 2^(n-3), {n, 0, 70}]
    LinearRecurrence[{6,-12,8}, {1,5,19}, 50] (* G. C. Greubel, Oct 17 2018 *)
  • Maxima
    makelist((3*n^2 + 9*n + 8)*2^(n - 3), n, 0, 70);
    
  • PARI
    a(n) = (3*n^2 + 9*n + 8)*2^(n - 3) \\ Felix Fröhlich, Nov 19 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 2*x)^3.
a(n+3) = 8*a(n) - 12*a(n+1) + 6*a(n+2).
a(n+1) = 2*a(n) + 3*(n + 2)*2^(n-1).
a(n+1) = 2*a(n) + 3*A001792(n) = 2*a(n) + A001787(n+2) - A001792(n).
a(n) = (3*n^2 + 9*n + 8)*2^(n - 3).
a(n) = (1/8)*A077588(n+2)*A000079(n).