A295288 Binomial transform of the centered triangular numbers A005448.
1, 5, 19, 62, 184, 512, 1360, 3488, 8704, 21248, 50944, 120320, 280576, 647168, 1478656, 3350528, 7536640, 16842752, 37421056, 82706432, 181927936, 398458880, 869269504, 1889533952, 4093640704, 8841592832, 19042140160, 40902852608
Offset: 0
Examples
a(0) = (3*0^2 + 9*0 + 8)*2^(-3) = 8/8 = 1.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Magma
I:=[1,5,19]; [n le 3 select I[n] else 6*Self(n-1) -12*Self(n-2) +8*Self(n-3): n in [1..40]]; // G. C. Greubel, Oct 17 2018
-
Maple
A:=n->(3*n^2+9*n+8)*2^(n-3); seq(A(n), n=0..70);
-
Mathematica
Table[(3 n^2 + 9 n + 8) 2^(n-3), {n, 0, 70}] LinearRecurrence[{6,-12,8}, {1,5,19}, 50] (* G. C. Greubel, Oct 17 2018 *)
-
Maxima
makelist((3*n^2 + 9*n + 8)*2^(n - 3), n, 0, 70);
-
PARI
a(n) = (3*n^2 + 9*n + 8)*2^(n - 3) \\ Felix Fröhlich, Nov 19 2017
Comments