A295369 Number of squarefree primitive abundant numbers (A071395) with n prime factors.
0, 0, 1, 18, 610, 216054, 12566567699
Offset: 1
Examples
For n=3, the only squarefree primitive abundant number (SFPAN) is 2*5*7 = 70, which is also a primitive weird number, see A002975. For n=4, the 18 SFPAN range from 2*5*11*13 = 1430 to 2*5*11*53 = 5830. For n=5, the 610 SFPAN range from 3*5*7*11*13 = 15015 to 2*5*11*59*647 = 4199030.
Links
- Gianluca Amato, Primitive Weirds and Abundant Numbers, GitHub.
- Gianluca Amato, Maximilian F. Hasler, Giuseppe Melfi, and Maurizio Parton, Primitive abundant and weird numbers with many prime factors, arXiv:1802.07178 [math.NT], 2018.
Crossrefs
Programs
-
PARI
A295369(n, p=1, m=1, sigmam=1) = { my(centerm = sigmam/(2*m-sigmam), s=0); if (n==1, if (centerm > p, primepi(ceil(centerm)-1) - primepi(p), 0), p = max(floor(centerm),p); while (0
A295369(n-1, p=nextprime(p+1), m*p, sigmam*(p+1)), s+=c); s ) } -
SageMath
def A295369(n, p=1, m=1, sigmam=1): centerm = sigmam/(2*m-sigmam) if n==1: return prime_pi(ceil(centerm)-1) - prime_pi(p) if centerm > p else 0 else: p = max(floor(centerm), p) s = 0 while True: p = next_prime(p) c = A295369(n-1, p, m*p, sigmam*(p+1)) if c <= 0: return s s+=c
Comments