cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295369 Number of squarefree primitive abundant numbers (A071395) with n prime factors.

Original entry on oeis.org

0, 0, 1, 18, 610, 216054, 12566567699
Offset: 1

Views

Author

Gianluca Amato, Feb 12 2018

Keywords

Comments

Here primitive abundant number means an abundant number all of whose proper divisors are deficient numbers (A071395). The alternative definition (an abundant number having no abundant proper divisor, see A091191) would yield an infinite count for a(3): since 2*3 = 6 is perfect, all numbers of the kind 2*3*p with p > 3 would be primitive abundant.
See A287590 for the number of squarefree ODD primitive abundant numbers with n prime factors.
The actual numbers are listed in A298973. - M. F. Hasler, Feb 16 2018

Examples

			For n=3, the only squarefree primitive abundant number (SFPAN) is 2*5*7 = 70, which is also a primitive weird number, see A002975.
For n=4, the 18 SFPAN range from 2*5*11*13 = 1430 to 2*5*11*53 = 5830.
For n=5, the 610 SFPAN range from 3*5*7*11*13 = 15015 to 2*5*11*59*647 = 4199030.
		

Crossrefs

Cf. A071395 (primitive abundant numbers), A287590 (counts of odd SFPAN), A298973, A249242 (using A091191).

Programs

  • PARI
    A295369(n, p=1, m=1, sigmam=1) = {
      my(centerm = sigmam/(2*m-sigmam), s=0);
      if (n==1,
        if (centerm > p, primepi(ceil(centerm)-1) - primepi(p), 0),
        p = max(floor(centerm),p); while (0A295369(n-1, p=nextprime(p+1), m*p, sigmam*(p+1)), s+=c); s
      )
    }
    
  • SageMath
    def A295369(n, p=1, m=1, sigmam=1):
      centerm = sigmam/(2*m-sigmam)
      if n==1:
        return prime_pi(ceil(centerm)-1) - prime_pi(p) if centerm > p else 0
      else:
        p = max(floor(centerm), p)
        s = 0
        while True:
           p = next_prime(p)
           c = A295369(n-1, p, m*p, sigmam*(p+1))
           if c <= 0: return s
           s+=c