cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296078 Least number with the same prime signature as 1+phi(n), where phi = A000010, Euler totient function.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 6, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 6, 4, 6, 2, 6, 12, 4, 2, 4, 2, 2, 2, 2, 2, 4, 2, 6, 6, 2, 2, 4, 6, 2, 6, 2, 2, 4, 2, 12, 2, 2, 2, 6, 2, 2, 2, 2, 2, 6, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Crossrefs

Cf. A039698 (positions of 2's).

Programs

  • Mathematica
    f[n_] := Block[{ps = Last@# & /@ FactorInteger[1 + EulerPhi@n]}, Times @@ ((Prime@ Range@ Length@ ps)^ps)]; Array[f, 105] (* Robert G. Wilson v, Dec 11 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));

Formula

a(n) = A046523(A039649(n)) = A046523(1+A000010(n)).

A296077 a(n) = 1 if 1 + A002322(n) is prime, 0 otherwise, where A002322 is Carmichael lambda.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Comments

Out of the first 65537 values, 39743 are 1's (indicating primes), and 25794 are 0's, indicating nonprimes.

Crossrefs

Characteristic function for A263028.
Cf. A002322, A010051, A263027, A263029 (positions of zeros), A296076, A296079.

Programs

  • Mathematica
    Table[If[PrimeQ[CarmichaelLambda[n]+1],1,0],{n,120}] (* Harvey P. Dale, Sep 23 2020 *)
  • PARI
    A296077(n) = isprime(1+lcm(znstar(n)[2]));

Formula

a(n) = A010051(A263027(n)) = A010051(1+A002322(n)).

A263027 a(n) = A002322(n) + 1, where A002322 is Carmichael lambda.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 7, 3, 7, 5, 11, 3, 13, 7, 5, 5, 17, 7, 19, 5, 7, 11, 23, 3, 21, 13, 19, 7, 29, 5, 31, 9, 11, 17, 13, 7, 37, 19, 13, 5, 41, 7, 43, 11, 13, 23, 47, 5, 43, 21, 17, 13, 53, 19, 21, 7, 19, 29, 59, 5, 61, 31, 7, 17, 13, 11, 67, 17, 23, 13, 71, 7
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2015

Keywords

Comments

The function t(k,n) = A002322(n)+k provides many prime values for k=1: for n up to 1000, for example, it returns 798 primes (with repetitions). On the other hand, for n <= 1000 and odd k from 3 to 11, t(k,n) gives 247, 387, 538, 231, 504 prime values, respectively.
Another function of this type is |A002322(n)-119|, which provides 693 prime values for n <= 1000. [Bruno Berselli, Oct 14 2015]

Crossrefs

Cf. A002322.
Cf. A263028: indices n for which a(n) is prime.
Cf. A263029: indices n for which a(n) is composite.
Cf. also A039649, A296076, A296077.

Programs

  • Magma
    [2] cat [CarmichaelLambda(n)+1: n in [2..100]];
    
  • Mathematica
    Table[CarmichaelLambda[n] + 1, {n, 1, 100}]
  • PARI
    vector(100, n, 1 + lcm(znstar(n)[2])) \\ Altug Alkan, Oct 08 2015

Extensions

Edited by Bruno Berselli, Oct 14 2015

A296092 Least number with the same prime signature as sigma(n)+1.

Original entry on oeis.org

2, 4, 2, 8, 2, 2, 4, 16, 6, 2, 2, 2, 6, 4, 4, 32, 2, 24, 6, 2, 6, 2, 4, 2, 32, 2, 2, 6, 2, 2, 6, 64, 4, 6, 4, 12, 6, 2, 6, 6, 2, 2, 12, 6, 2, 2, 4, 8, 6, 6, 2, 12, 6, 4, 2, 4, 16, 6, 2, 4, 12, 2, 30, 128, 6, 6, 6, 2, 2, 6, 2, 36, 12, 6, 8, 6, 2, 4, 16, 6, 6, 2, 6, 36, 2, 6, 4, 2, 6, 6, 2, 4, 6, 6, 4, 6, 12, 12, 2, 6, 2, 6, 30, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A088580(n)) = A046523(1+A000203(n)).
Showing 1-4 of 4 results.