A296306 a(n) = A001157(n)/A050999(n).
1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 341, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 1365, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 341, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 5461, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 341, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 1365
Offset: 1
Examples
A001157(4) = 21 and A050999(4) = 1, therefore a(4) = A001157(4)/A050999(4) = 21.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
Programs
-
Magma
[DivisorSigma(2,n)/&+[d^2:d in Divisors(n)|IsOdd(d)]:n in [1..100]]; // Marius A. Burtea, Jan 29 2020
-
Mathematica
f[n_]:=DivisorSigma[2,n]/Total[Select[Divisors[n],OddQ]^2]; f/@Range[100] Table[(4^(IntegerExponent[n, 2] + 1) - 1)/3, {n, 1, 100}] (* Amiram Eldar, Nov 12 2020 *)
-
PARI
a(n) = sigma(n, 2)/sumdiv(n, d, d^2*(d % 2)); \\ Michel Marcus, Dec 11 2017
-
Python
def A296306(n): return ((1<<((n&-n).bit_length()<<1))-1)//3 # Chai Wah Wu, Jul 16 2022
Formula
a(n) = (4^(A007814(n) + 1) - 1)/3. - David Radcliffe, Dec 11 2017
Multiplicative with a(2^e) = (4^(e+1)-1)/3, and a(p^e) = 1 for odd primes p. - Amiram Eldar, Nov 12 2020
G.f.: Sum_{k>=0} 4^k * x^(2^k) / (1 - x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020
Dirichlet g.f.: zeta(s)/(1-4/2^s). - Amiram Eldar, Dec 31 2022
Comments