cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A309567 a(1) = 4, a(2) = 2, a(3) = 5, a(4) = 3, a(5) = 1; a(n) = a(n-a(n-1)) + a(n-a(n-4)) for n > 5.

Original entry on oeis.org

4, 2, 5, 3, 1, 4, 7, 5, 8, 6, 4, 12, 5, 13, 6, 9, 17, 5, 18, 6, 9, 22, 5, 23, 11, 9, 27, 5, 28, 11, 9, 32, 5, 33, 11, 14, 37, 5, 38, 11, 14, 42, 5, 43, 11, 14, 47, 5, 48, 16, 14, 52, 5, 53, 16, 14, 57, 5, 58, 16, 14, 62, 5, 63, 16, 19, 67, 5, 68, 16, 19, 72, 5, 73, 16, 19, 77, 5, 78, 16, 19, 82, 5, 83, 21, 19, 87, 5
Offset: 1

Views

Author

Altug Alkan and Rémy Sigrist, Aug 08 2019

Keywords

Comments

A well-defined quasi-periodic solution for Hofstadter V recurrence (a(n) = a(n-a(n-1)) + a(n-a(n-4))).

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,j;
      j:= n mod 5;
      k:= (n-j)/5;
      if j=0 then 5*floor(sqrt(k-1))+1
      elif j=1 then 5*round(sqrt(k))-1
      elif j=2 then 5*k+2
      elif j=3 then 5
      else 5*k+3
      fi
    end proc:
    f(1):= 4:
    map(f, [$1..100]); # Robert Israel, Aug 08 2019
  • Mathematica
    a[n_] := a[n] = If[n < 6, {4, 2, 5, 3, 1}[[n]], a[n - a[n-1]] + a[n - a[n-4]]]; Array[a, 88] (* Giovanni Resta, Aug 08 2019 *)
  • PARI
    q=vector(100); q[1]=4; q[2]=2; q[3]=5; q[4]=3; q[5]=1; for(n=6, #q, q[n]=q[n-q[n-1]]+q[n-q[n-4]]); q

Formula

For k >= 1:
a(5*k) = 5*floor(sqrt(k-1))+1,
a(5*k+1) = 5*round(sqrt(k))-1,
a(5*k+2) = 5*k+2,
a(5*k+3) = 5,
a(5*k+4) = 5*k+3.

A309554 a(1) = a(6) = 1, a(2) = a(3) = a(8) = 2, a(4) = a(7) = 7, a(5) = 5; a(n) = a(n-a(n-1)) + a(n-a(n-3)) for n > 8.

Original entry on oeis.org

1, 2, 2, 7, 5, 1, 7, 2, 9, 3, 11, 3, 6, 4, 14, 5, 9, 16, 6, 15, 6, 10, 8, 21, 21, 21, 2, 28, 3, 30, 3, 6, 4, 33, 5, 9, 35, 6, 34, 6, 10, 8, 40, 40, 40, 2, 47, 3, 49, 3, 6, 4, 52, 5, 9, 54, 6, 53, 6, 10, 8, 59, 59, 59, 2, 66, 3, 68, 3, 6, 4, 71, 5, 9, 73, 6, 72, 6, 10, 8, 78, 78, 78, 2, 85, 3, 87, 3, 6, 4
Offset: 1

Views

Author

Altug Alkan and Rémy Sigrist, Aug 07 2019

Keywords

Comments

A well-defined solution sequence for recurrence a(n) = a(n-a(n-1)) + a(n-a(n-3)).

Crossrefs

Programs

  • Magma
    I:=[1,2,2,7,5,1,7,2];[n le 8 select I[n] else Self(n-Self(n-1))+Self(n-Self(n-3)): n in [1..90]]; // Marius A. Burtea, Aug 08 2019
  • PARI
    q=vector(100); q[1]=q[6]=1; q[2]=q[3]=q[8]=2; q[4]=q[7]=7; q[5]=5; for(n=9, #q, q[n]=q[n-q[n-1]]+q[n-q[n-3]]); q
    
  • PARI
    Vec(x*(1 + x)*(1 + x + x^2 + 6*x^3 - x^4 + 2*x^5 + 5*x^6 - 3*x^7 + 12*x^8 - 9*x^9 + 20*x^10 - 17*x^11 + 23*x^12 - 19*x^13 + 33*x^14 - 28*x^15 + 37*x^16 - 21*x^17 + 27*x^18 - 14*x^19 + 16*x^20 - 10*x^21 + 4*x^22 + 7*x^23 + 12*x^24 - 5*x^25 + 3*x^26 + 7*x^27 - 10*x^28 + 18*x^29 - 21*x^30 + 15*x^31 - 19*x^32 + 24*x^33 - 29*x^34 + 20*x^35 - 17*x^36 + 11*x^37 - 6*x^38 + 2*x^39 - 10*x^40 + 9*x^41 - 6*x^42 + 5*x^43) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18)^2) + O(x^90)) \\ Colin Barker, Aug 11 2019
    

Formula

For k >= 1:
a(19*k-11) = 2,
a(19*k-10) = 19*k-10,
a(19*k-9) = 3,
a(19*k-8) = 19*k-8,
a(19*k-7) = 3,
a(19*k-6) = 6,
a(19*k-5) = 4,
a(19*k-4) = 19*k-5,
a(19*k-3) = 5,
a(19*k-2) = 9,
a(19*k-1) = 19*k-3,
a(19*k) = 6,
a(19*k+1) = 19*k-4,
a(19*k+2) = 6,
a(19*k+3) = 10,
a(19*k+4) = 8,
a(19*k+5) = a(19*k+6) = a(19*k+7) = 19*k+2.
From Colin Barker, Aug 08 2019: (Start)
G.f.: x*(1 + x)*(1 + x + x^2 + 6*x^3 - x^4 + 2*x^5 + 5*x^6 - 3*x^7 + 12*x^8 - 9*x^9 + 20*x^10 - 17*x^11 + 23*x^12 - 19*x^13 + 33*x^14 - 28*x^15 + 37*x^16 - 21*x^17 + 27*x^18 - 14*x^19 + 16*x^20 - 10*x^21 + 4*x^22 + 7*x^23 + 12*x^24 - 5*x^25 + 3*x^26 + 7*x^27 - 10*x^28 + 18*x^29 - 21*x^30 + 15*x^31 - 19*x^32 + 24*x^33 - 29*x^34 + 20*x^35 - 17*x^36 + 11*x^37 - 6*x^38 + 2*x^39 - 10*x^40 + 9*x^41 - 6*x^42 + 5*x^43) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18)^2).
a(n) = 2*a(n-19) - a(n-38) for n > 45.
(End)

A309636 a(1) = 3, a(2) = 1, a(3) = 4, a(4) = 2, a(5) = 5; a(6) = 3; a(n) = a(n-a(n-1)) + a(n-a(n-4)) for n > 6.

Original entry on oeis.org

3, 1, 4, 2, 5, 3, 6, 4, 7, 10, 8, 6, 9, 7, 10, 13, 6, 14, 12, 10, 18, 6, 14, 17, 10, 23, 11, 14, 22, 10, 28, 16, 14, 27, 10, 33, 16, 14, 32, 10, 38, 16, 19, 37, 10, 43, 16, 24, 42, 10, 48, 16, 24, 47, 10, 53, 16, 24, 52, 10, 58, 16, 24, 57, 10, 63, 21, 24, 62, 10, 68, 26, 24, 67, 10
Offset: 1

Views

Author

Altug Alkan and Nathan Fox, Aug 10 2019

Keywords

Comments

A well-defined quasi-periodic solution for Hofstadter V recurrence (a(n) = a(n-a(n-1)) + a(n-a(n-4))).

Crossrefs

Programs

  • Magma
    I:=[3,1,4,2,5,3]; [n le 6 select I[n] else  Self(n-Self(n-1)) + Self(n-Self(n-4)): n in [1..80]]; // Marius A. Burtea, Aug 11 2019
  • Mathematica
    Nest[Append[#, #[[-#[[-1]] ]] + #[[-#[[-4]] ]]] &, {3, 1, 4, 2, 5, 3}, 69] (* Michael De Vlieger, May 08 2020 *)
  • PARI
    q=vector(100); q[1]=3; q[2]=1; q[3]=4; q[4]=2; q[5]=5; q[6]=3; for(n=7, #q, q[n] = q[n-q[n-1]] + q[n-q[n-4]]); q
    

Formula

For k > 1:
a(5*k) = 10,
a(5*k+1) = 5*k-2,
a(5*k+2) = 5*(floor((sqrt(2*k-1)-1)/2) + floor((sqrt(2*k-3)-1)/2)) + 6,
a(5*k+3) = 5*(floor(sqrt(k/2)) + floor(sqrt((k-1)/2))) + 4,
a(5*k+4) = 5*k-3.
Also, a(5*k+2) = 5*f(k)+1 and a(5*k+3) = 5*g(k)-1 where f(k) = g(k-g(k-1)) and g(k) = f(k-f(k))+2 with f(1) = g(1) = 1, g(2) = 2.

A296690 a(1) = a(2) = a(3) = 2, a(4) = 4, a(5) = a(6) = 5; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) for n > 6.

Original entry on oeis.org

2, 2, 2, 4, 5, 5, 6, 6, 8, 10, 9, 8, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 20, 22, 21, 20, 24, 25, 20, 25, 28, 28, 21, 29, 32, 30, 25, 30, 30, 36, 30, 32, 35, 34, 36, 35, 37, 37, 38, 38, 40, 40, 40, 42, 41, 43, 43, 43, 45, 44, 46, 46, 47, 47, 49, 49, 49, 51, 50, 52, 52, 52, 54, 53, 56, 55, 58, 55, 62, 55
Offset: 1

Views

Author

Altug Alkan, Dec 18 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; procname(n-procname(n-1))+procname(n-procname(n-2))+procname(n-procname(n-3)) end proc:
    a(1):= 2: a(2):= 2: a(3):= 2: a(4):= 4: a(5):= 5: a(6):= 5:
    map(a, [$1..100]); #  after Robert Israel at A296440
  • Mathematica
    a[n_] := a[n] = If[n<7, {2, 2, 2, 4, 5, 5}[[n]], a[n - a[n-1]] + a[n - a[n-2]] + a[n - a[n-3]]]; Array[a, 100] (* after Giovanni Resta at A296440 *)
  • PARI
    q=vector(10^5); q[1]=2; q[2]=2; q[3]=2; q[4]=4; q[5]=5; q[6]=5; for(n=7, #q, q[n] = q[n-q[n-1]]+q[n-q[n-2]]+q[n-q[n-3]]); q
    
  • Scheme
    (definec (A296690 n) (cond ((<= n 3) 2) ((<= n 5) n) ((= n 6) 5) (else (+ (A296690 (- n (A296690 (- n 1)))) (A296690 (- n (A296690 (- n 2)))) (A296690 (- n (A296690 (- n 3)))))))) ;; Antti Karttunen, Dec 18 2017

A296786 a(1) = a(2) = a(5) = 2, a(3) = 1, a(4) = 3, a(6) = 5; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) for n > 6.

Original entry on oeis.org

2, 2, 1, 3, 2, 5, 7, 8, 7, 4, 11, 12, 11, 4, 15, 16, 15, 4, 19, 20, 19, 4, 23, 24, 23, 4, 27, 28, 27, 4, 31, 32, 31, 4, 35, 36, 35, 4, 39, 40, 39, 4, 43, 44, 43, 4, 47, 48, 47, 4, 51, 52, 51, 4, 55, 56, 55, 4, 59, 60, 59, 4, 63, 64, 63, 4, 67, 68, 67, 4, 71, 72, 71, 4, 75, 76, 75, 4, 79, 80, 79, 4
Offset: 1

Views

Author

Altug Alkan, Dec 20 2017

Keywords

Comments

A quasi-periodic solution to the three-term Hofstadter recurrence a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)). See comments in A296518.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; procname(n-procname(n-1))+procname(n-procname(n-2))+procname(n-procname(n-3)) end proc:
    a(1):= 2: a(2):= 2: a(3):= 1: a(4):= 3: a(5):= 2: a(6):= 5:
    map(a, [$1..100]); # after Robert Israel at A296440
  • Mathematica
    a[n_] := a[n] = If[n<7, {2, 2, 1, 3, 2, 5}[[n]], a[n - a[n-1]] + a[n - a[n-2]] + a[n - a[n-3]]]; Array[a, 100] (* after Giovanni Resta at A296440 *)
  • PARI
    q=vector(10^5); q[1]=2;q[2]=2;q[3]=1;q[4]=3;q[5]=2;q[6]=5;for(n=7, #q, q[n] = q[n-q[n-1]]+q[n-q[n-2]]+q[n-q[n-3]]); q
    
  • PARI
    Vec(x*(2 + 2*x + x^2 + 3*x^3 - 2*x^4 + x^5 + 5*x^6 + 2*x^7 + 5*x^8 - 4*x^9 - 2*x^10 - x^11 - x^12 + x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2) + O(x^100)) \\ Colin Barker, Dec 29 2017

Formula

a(4*k-1) = a(4*k+1) = 4*k-1, a(4*k) = 4*k, a(4*k+2) = 4, for k > 1.
From Colin Barker, Dec 28 2017: (Start)
G.f.: x*(2 + 2*x + x^2 + 3*x^3 - 2*x^4 + x^5 + 5*x^6 + 2*x^7 + 5*x^8 - 4*x^9 - 2*x^10 - x^11 - x^12 + x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>14.
(End)

A304490 a(1) = a(2) = a(3) = 1, a(4) = 5, a(5) = 6, a(6) = 4; a(n) = a(n-a(n-2)) + a(n-a(n-4)) for n > 6.

Original entry on oeis.org

1, 1, 1, 5, 6, 4, 5, 6, 6, 9, 10, 5, 6, 12, 12, 15, 16, 5, 6, 18, 18, 21, 22, 5, 6, 24, 24, 27, 28, 5, 6, 30, 30, 33, 34, 5, 6, 36, 36, 39, 40, 5, 6, 42, 42, 45, 46, 5, 6, 48, 48, 51, 52, 5, 6, 54, 54, 57, 58, 5, 6, 60, 60, 63, 64, 5, 6, 66, 66, 69, 70, 5, 6, 72, 72, 75, 76, 5, 6, 78, 78, 81, 82, 5, 6
Offset: 1

Views

Author

Altug Alkan, May 13 2018

Keywords

Comments

A quasi-periodic solution to the recurrence a(n) = a(n-a(n-2)) + a(n-a(n-4)). Although A087777 and A240809 are highly chaotic, this sequence is completely predictable thanks to its initial conditions.

Crossrefs

Programs

  • PARI
    q=vector(85); q[1]=1;q[2]=1;q[3]=1;q[4]=5;q[5]=6;q[6]=4; for(n=7, #q, q[n] = q[n-q[n-2]]+q[n-q[n-4]]); q

Formula

a(6*k) = 5, a(6*k+1) = 6, a(6*k+2) = a(6*k+3) = 6*k, a(6*k+4) = 6*k+3, a(6*k+5) = 6*k+4 for k > 1.
Conjectures from Colin Barker, May 14 2018: (Start)
G.f.: x*(1 - x + 2*x^2 + 2*x^3 + 2*x^5 - x^6 + 4*x^7 - 3*x^8 + x^9 - x^10 - 2*x^11 + 2*x^12 - x^13 + x^14 + x^15 - x^16) / ((1 - x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 5*a(n-4) + 6*a(n-5) - 5*a(n-6) + 4*a(n-7) - 3*a(n-8) + 2*a(n-9) - a(n-10) for n>17.
(End)
Showing 1-6 of 6 results.