A296519 Denominator of n*Sum_{k=1..n} 1/(n+k).
2, 6, 20, 210, 504, 4620, 51480, 18018, 272272, 23279256, 21162960, 446185740, 2059318800, 5736673800, 22181805360, 1289317436550, 1213475234400, 8022419605200, 281206918792800, 267146572853160, 10431437606647200, 428163098127382800, 409547311252279200
Offset: 1
Examples
The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/a(n).
Links
- Robert Israel, Table of n, a(n) for n = 1..1155
Programs
-
Magma
[Denominator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
Maple
N:= 30: # for a(1)..a(N) H:= ListTools:-PartialSums([seq(1/i,i=1..2*N)]): map(n -> denom(n*(H[2*n]-H[n])), [$1..N]); # Robert Israel, May 21 2020
-
Mathematica
Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 30}] // Denominator
-
PARI
a(n) = denominator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
SageMath
[denominator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
Comments