A296955 Sum of the smaller parts of the partitions of n into two distinct parts such that the smaller part divides the larger.
0, 0, 1, 1, 1, 3, 1, 3, 4, 3, 1, 10, 1, 3, 9, 7, 1, 12, 1, 12, 11, 3, 1, 24, 6, 3, 13, 14, 1, 27, 1, 15, 15, 3, 13, 37, 1, 3, 17, 30, 1, 33, 1, 18, 33, 3, 1, 52, 8, 18, 21, 20, 1, 39, 17, 36, 23, 3, 1, 78, 1, 3, 41, 31, 19, 45, 1, 24, 27, 39, 1, 87, 1, 3, 49, 26, 19, 51, 1, 66, 40, 3, 1, 98, 23, 3, 33, 48, 1, 99, 21, 30, 35, 3, 25, 108, 1
Offset: 1
Examples
a(12) = 10; the partitions of 12 into two distinct parts are (11,1), (10,2), (9,3), (8,4) and (7,5). 1 divides 11, 2 divides 10, 3 divides 9 and 4 divides 8, so the sum of the smaller parts gives 1 + 2 + 3 + 4 = 10.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): a := n -> add( d, d = divisors(n) minus {floor((n+1)/2), n} ): seq(a(n), n = 1..100); # Peter Bala, Jan 13 2021
-
Mathematica
Table[Sum[i (Floor[n/i] - Floor[(n - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 100}] f[n_] := Plus @@ Select[Divisors@n, 2 # < n &]; Array[f, 75] (* Robert G. Wilson v, Dec 23 2017 *)
-
PARI
A296955(n) = sumdiv(n,d,(d<(n/2))*d); \\ Antti Karttunen, Sep 25 2018
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} i * (floor(n/i) - floor((n-1)/i)).
a(n) = the sum of the divisors < n/2. - Robert G. Wilson v, Dec 23 2017
a(n) = 1 iff n is an odd prime or n=4. - Robert G. Wilson v, Dec 23 2017
G.f.: Sum_{k>=1} k * x^(3*k) / (1 - x^k). - Ilya Gutkovskiy, May 30 2020
G.f.: Sum_{k >= 3} x^k/(1 - x^k)^2. Cf. A023645. - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+2))*( n*q^(3*n+4) - (n + 1)*q^(2*n+2) - (n - 1)*q^(n+2) + n )/( (1 - q^n )*(1 - q^(n+2))^2 ). (In equation 1 in Arndt, after combining the two n = 0 summands to get t/(1 - t), apply the operator t*d/dt and then set t = q^2 and x = 1. Cf. A001065.) - Peter Bala, Jan 22 2021
Extensions
More terms from Antti Karttunen, Sep 25 2018
Comments