A297024 Sum of the smaller parts of the partitions of n into two parts such that the smaller part does not divide the larger.
0, 0, 0, 0, 2, 0, 5, 3, 6, 7, 14, 5, 20, 18, 19, 21, 35, 24, 44, 33, 44, 52, 65, 42, 72, 75, 78, 77, 104, 78, 119, 105, 121, 133, 140, 116, 170, 168, 173, 160, 209, 177, 230, 213, 220, 250, 275, 224, 292, 282, 304, 305, 350, 312, 361, 342, 383, 403, 434, 357
Offset: 1
Examples
a(10) = 7; the partitions of 10 into two parts are (9,1), (8,2), (7,3), (6,4), (5,5). The sum of the smaller parts that do not divide their larger counterparts is then 3 + 4 = 7.
Links
Crossrefs
Cf. A296955.
Programs
-
GAP
List(List(List([1..10^2], n-> Partitions(n,2)), i -> Filtered(i, j -> j[1] mod j[2] <> 0)), m->Sum(m, k -> k[2])); # Muniru A Asiru, Jan 28 2018
-
Mathematica
Table[Sum[i (1 - (Floor[n/i] - Floor[(n - 1)/i])), {i, Floor[n/2]}], {n, 100}] f[n_] := Plus @@ Select[ Range[n/2], !MemberQ[Divisors[n], #] &]; Array[f, 60] (* Robert G. Wilson v, Dec 23 2017 *) Table[Total[Select[IntegerPartitions[n,{2}],Mod[#[[1]],#[[2]]]!=0&][[All,2]]],{n,60}] (* Harvey P. Dale, Dec 17 2021 *)
Formula
a(n) = Sum_{i=1..floor(n/2)} i * (1-(floor(n/i)-floor((n-1)/i))).