cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296955 Sum of the smaller parts of the partitions of n into two distinct parts such that the smaller part divides the larger.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 3, 4, 3, 1, 10, 1, 3, 9, 7, 1, 12, 1, 12, 11, 3, 1, 24, 6, 3, 13, 14, 1, 27, 1, 15, 15, 3, 13, 37, 1, 3, 17, 30, 1, 33, 1, 18, 33, 3, 1, 52, 8, 18, 21, 20, 1, 39, 17, 36, 23, 3, 1, 78, 1, 3, 41, 31, 19, 45, 1, 24, 27, 39, 1, 87, 1, 3, 49, 26, 19, 51, 1, 66, 40, 3, 1, 98, 23, 3, 33, 48, 1, 99, 21, 30, 35, 3, 25, 108, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 22 2017

Keywords

Comments

The number of partitions of n into 3 parts whose "middle" part divides n. - Wesley Ivan Hurt, Oct 21 2021

Examples

			a(12) = 10; the partitions of 12 into two distinct parts are (11,1), (10,2), (9,3), (8,4) and (7,5). 1 divides 11, 2 divides 10, 3 divides 9 and 4 divides 8, so the sum of the smaller parts gives 1 + 2 + 3 + 4 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a := n -> add( d, d = divisors(n) minus {floor((n+1)/2), n} ):
    seq(a(n), n = 1..100); # Peter Bala, Jan 13 2021
  • Mathematica
    Table[Sum[i (Floor[n/i] - Floor[(n - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 100}]
    f[n_] := Plus @@ Select[Divisors@n, 2 # < n &]; Array[f, 75] (* Robert G. Wilson v, Dec 23 2017 *)
  • PARI
    A296955(n) = sumdiv(n,d,(d<(n/2))*d); \\ Antti Karttunen, Sep 25 2018

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} i * (floor(n/i) - floor((n-1)/i)).
a(n) = the sum of the divisors < n/2. - Robert G. Wilson v, Dec 23 2017
a(n) = 1 iff n is an odd prime or n=4. - Robert G. Wilson v, Dec 23 2017
G.f.: Sum_{k>=1} k * x^(3*k) / (1 - x^k). - Ilya Gutkovskiy, May 30 2020
G.f.: Sum_{k >= 3} x^k/(1 - x^k)^2. Cf. A023645. - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+2))*( n*q^(3*n+4) - (n + 1)*q^(2*n+2) - (n - 1)*q^(n+2) + n )/( (1 - q^n )*(1 - q^(n+2))^2 ). (In equation 1 in Arndt, after combining the two n = 0 summands to get t/(1 - t), apply the operator t*d/dt and then set t = q^2 and x = 1. Cf. A001065.) - Peter Bala, Jan 22 2021
a(n) = A000203(n) - A080512(n). - Ridouane Oudra, Aug 15 2024

Extensions

More terms from Antti Karttunen, Sep 25 2018

A303384 Total area of all rectangles with dimensions s and t where s | t, n = s + t and s <= t.

Original entry on oeis.org

0, 1, 2, 7, 4, 22, 6, 35, 26, 50, 10, 126, 12, 86, 100, 155, 16, 247, 18, 294, 172, 182, 22, 590, 124, 242, 260, 518, 28, 860, 30, 651, 364, 386, 380, 1365, 36, 470, 484, 1390, 40, 1532, 42, 1134, 1144, 662, 46, 2542, 342, 1395, 772, 1526, 52, 2380, 788
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 22 2018

Keywords

Crossrefs

Programs

  • GAP
    List([1..60],n->Sum([1..Int(n/2)],i->i*(n-i)*(Int((n-i)/i)-Int((n-i-1)/i)))); # Muniru A Asiru, Jun 07 2018
  • Magma
    [0] cat [&+[k*(n-k)*((n-k) div k)-(n-k-1) div k:  k in [1..n div 2]]: n in [2..80]]; // Vincenzo Librandi, Jun 07 2018
    
  • Maple
    with(numtheory): seq(n*sigma(n) - sigma[2](n), n=1..60); # Ridouane Oudra, Apr 15 2021
  • Mathematica
    Table[Sum[i (n - i) (Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[n/2]}], {n, 80}]
    a[n_] := n * DivisorSigma[1, n] - DivisorSigma[2, n]; Array[a, 100] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = sum(i=1, n\2, i*(n-i)*((n-i)\i - (n-i-1)\i)); \\ Michel Marcus, Jun 07 2018
    
  • PARI
    a(n) = sumdiv(n, d, d*(n-d)); \\ Daniel Suteu, Jun 19 2018
    
  • PARI
    a(n) = {my(f = factor(n)); n * sigma(f) - sigma(f, 2);} \\ Amiram Eldar, Dec 11 2023
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i * (n-i) * (floor((n-i)/i) - floor((n-i-1)/i)).
a(n) = Sum_{d|n} d*(n-d). - Daniel Suteu, Jun 19 2018
a(n) = n*sigma(n) - sigma_2(n). - Ridouane Oudra, Apr 15 2021
From Amiram Eldar, Dec 11 2023: (Start)
a(n) = A064987(n) - A001157(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) - zeta(3) = 0.442877... . (End)

A297053 Sum of the larger parts of the partitions of n into two parts such that the smaller part does not divide the larger.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 9, 5, 12, 13, 30, 7, 45, 38, 41, 43, 84, 48, 108, 67, 103, 124, 165, 78, 178, 185, 192, 175, 273, 162, 315, 247, 308, 343, 350, 244, 459, 440, 451, 360, 570, 411, 630, 535, 545, 670, 759, 496, 786, 718, 818, 787, 975, 768, 959, 834, 1042
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 24 2017

Keywords

Examples

			a(10) = 13; the partitions of 10 into two parts are (9,1), (8,2), (7,3), (6,4) and (5,5). The sum of the larger parts of these partitions such that the smaller part does not divide the larger is then 7 + 6 = 13.
		

Crossrefs

Cf. A297024.

Programs

  • Mathematica
    Table[Sum[(n - i) (1 - (Floor[n/i] - Floor[(n - 1)/i])), {i, Floor[n/2]}], {n, 80}]

Formula

a(n) = Sum_{i=1..floor(n/2)} (n-i) * (1 - (floor(n/i) - floor((n-1)/i))).
Showing 1-3 of 3 results.