A297707 a(n) = Product_{k=1..n-1} n!k, where n!k is k-tuple factorial of n.
1, 2, 18, 768, 90000, 44789760, 30494620800, 121762322841600, 393644011735296000, 5618427494400000000000, 107587910030480590233600000, 5951222311476064581656248320000, 176804782652901880753915871232000000, 69819090744423637487544223697731584000000
Offset: 1
Keywords
Examples
a(2) = (2!1) = (2*1) = 2; a(3) = (3!1)*(3!2) = (3*2*1)*(3*1) = 18; a(4) = (4!1)*(4!2)*(4!3) = (4*3*2*1)*(4*2)*(4*1) = 768; a(5) = (5!1)*(5!2)*(5!3)*(5!4) = (5*4*3*2*1)*(5*3*1)*(5*2)*(5*1) = 90000.
Links
- Michel Marcus, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n<1, 1, n*b(n-k, k)) end: a:= n-> mul(b(n, k), k=1..n-1): seq(a(n), n=1..20); # Alois P. Heinz, Dec 02 2018
-
Mathematica
Array[(#^(# - 1)) Product[k^DivisorSigma[0, # - k], {k, # - 1}] &, 13] (* Michael De Vlieger, Jan 04 2018 *)
-
PARI
a(n) = (n^(n-1))*prod(k=1, n-1, k^numdiv(n-k)); \\ Michel Marcus, Dec 02 2018
Formula
a(n) = Product_{t=1..n-1} (Product_{k=0..floor((n-1)/t)} (n-t*k)).
a(n) = (n^(n-1))*Product_{k=1..n-1} k^tau(n-k).
Comments