A298362 Number of tight m X n pavings as defined in Knuth's A285357 written as triangle T(m,n), m >= 1, 1 <= n <= m.
1, 1, 4, 1, 11, 64, 1, 26, 282, 2072, 1, 57, 1071, 12279, 106738, 1, 120, 3729, 63858, 781458, 7743880, 1, 247, 12310, 305464, 5111986, 66679398, 735490024, 1, 502, 39296, 1382648, 30980370, 521083252, 7216122740, 87138728592, 1, 1013, 122773, 6029325, 178047831, 3802292847, 65106398091
Offset: 1
Examples
The triangle starts: ================================================================================ m \ n| 1 2 3 4 5 6 7 8 9 -----|-------------------------------------------------------------------------- . 1 | 1 . 2 | 1 4 . 3 | 1 11 64 . 4 | 1 26 282 2072 . 5 | 1 57 1071 12279 106738 . 6 | 1 120 3729 63858 781458 7743880 . 7 | 1 247 12310 305464 5111986 66679398 735490024 . 8 | 1 502 39296 1382648 30980370 521083252 7216122740 87138728592 . 9 | 1 1013 122773 6029325 178047831 3802292847 65106398091 ? ? . 10 | 1 2036 378279 25628762 985621119 26409556208 ...
Links
- Roberto Tauraso, Problem 12005, Proposed solution.
- Konstantin Vladimirov, Generating things, Program naivepavings.cc to enumerate all tight pavings.
Extensions
Added a number of values in the example table, Denis Roegel, Feb 24 2018
Extended using data from Denis Roegel by Hugo Pfoertner, Mar 12 2018
Comments