cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A357450 a(n) is the smallest integer having exactly n odd square divisors (A298735).

Original entry on oeis.org

1, 9, 81, 225, 6561, 2025, 531441, 11025, 50625, 164025, 3486784401, 99225, 282429536481, 13286025, 4100625, 893025, 1853020188851841, 2480625, 150094635296999121, 8037225, 332150625, 87169610025, 984770902183611232881, 12006225, 2562890625, 7060738412025, 121550625
Offset: 1

Views

Author

Bernard Schott, Sep 29 2022

Keywords

Comments

All terms are odd and squares (A016754).

Examples

			2025 has 6 divisors that are odd squares: {1, 9, 25, 81, 225, 2025}; also, 2025 is the smallest integer that has 6 odd squares divisors, hence a(6) = 2025.
		

Crossrefs

Programs

  • PARI
    f(n) = factorback(apply(e->e\2+1, factor(n/2^valuation(n, 2))[, 2])); \\ A298735
    a(n) = my(k=1); while (f(k)!=n, k++); k; \\ Michel Marcus, Sep 29 2022

Formula

a(n) = A038547(n)^2. - Thomas Scheuerle, Sep 30 2022
Proof: Suppose a(n) = Product p_i^(2*e_i), where the p_i are odd primes. Then the n odd square divisors are all of the form d = Product p_i^(2*k_i) with 0 <= k_i <= e_i. As a(n) = Product (p_i^e_i)^2 = (Product (p_i^e_i))^2, we get that sqrt(a(n)) = Product (p_i^e_i). This is the prime decomposition of sqrt(a(n)). As there is a bijection between prime factors p_i^(2*k_i) and (p_i^k_i), there is also bijection between odd square divisors of a(n) and odd divisors of sqrt(a(n)). We conclude that sqrt(a(n)) is the smallest integer that has exactly n odd divisors. - Bernard Schott, Oct 01 2022
a(p) = 3^(2*(p-1)) for primes p. - Bernard Schott, Oct 03 2022

Extensions

a(7)-a(10) from Michel Marcus, Sep 29 2022
More terms from Amiram Eldar, Sep 29 2022

A384916 The number of unordered factorizations of n into powers of primes of the form p^e where p is prime and 0 <= e < p.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A298735 at n = 125.

Examples

			a(9) = 2 since 9 has 2 factorizations: 3^1 * 3^1 and 3^2, with exponents 1 and 2 that are < 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Length[IntegerPartitions[e, p-1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    T(n, k)=my(s); forpart(v=n, s++, , k); s \\ Charles R Greathouse IV at A026820
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, T(f[i,2], f[i,1]-1));}

Formula

Multiplicative with a(p^e) = A026820(e, p-1).
a(n) <= A384915(n), with equality if and only if n is in A048103.

A360157 a(n) is the number of unitary divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A298735 at n = 27.
The unitary analog of A298735.
The least term that is larger than 2 is a(225) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, 2]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, if(f[i, 1] == 2, 1, 2)));}

Formula

Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = 1 if e is odd and 2 if e is even.
Dirichlet g.f.: (zeta(s)*zeta(2*s)/zeta(3*s)) * (4^s + 2^s)/(4^s + 2^s + 1).
Sum_{k=1..n} a(k) ~ c * n, where c = Pi^2/(7*zeta(3)) = 1.172942380817... .
More precise asymptotics: Sum_{k=1..n} a(k) ~ Pi^2 * n / (7*zeta(3)) + (4 + sqrt(2)) * zeta(1/2) * sqrt(n) / (7*zeta(3/2)). - Vaclav Kotesovec, Jan 29 2023

A358345 a(n) is the number of even square divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

First differs from A235127 at n = 36.
The first position of k >= 0 in this sequence is A187941(k)^2.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := Floor[e/2] + 1; f2[p_, e_] := If[p == 2, 1, Floor[e/2] + 1]; a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, if(f[i,1] == 2, 1, 1+f[i,2]\2))};
    
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d) && !(d%2), 1)); \\ Michel Marcus, Nov 11 2022

Formula

a(n) = A046951(n) - A298735(n).
a(n) = 2 * A046951(n) - A046951(4*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/24 (A222171).
Showing 1-4 of 4 results.