cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A130279 Smallest number having exactly n square divisors.

Original entry on oeis.org

1, 4, 16, 36, 256, 144, 4096, 576, 1296, 2304, 1048576, 3600, 16777216, 36864, 20736, 14400, 4294967296, 32400, 68719476736, 57600, 331776, 9437184, 17592186044416, 129600, 1679616, 150994944, 810000, 921600, 72057594037927936
Offset: 1

Views

Author

Reinhard Zumkeller, May 20 2007

Keywords

Comments

A046951(a(n)) = n and A046951(m) <> n for m < a(n);
all terms are smooth squares: if prime(k) is a factor of a(n) then also prime(i) are factors, i
a(p) = 2^(2*(p-1)) for primes p;
if prime(j) is the greatest prime factor of a(n) then a(2*n) = a(n)*prime(j+1)^2;
A001221(a(n)) = A122375(n); A001222(a(n)) = 2*A122376(n).
a(n+1) is the smallest nonsquarefree number m such that Diophantine equation S(x,y) = (x+y) + (x-y) + (x*y) + (x/y) = m has exactly n solutions, for n >= 0 (A353282); example: a(4) = 36 and 36 is the smallest number m such that equation S(x,y) = m has exactly 3 solutions: (9,1), (8,2), (5,5). - Bernard Schott, Apr 13 2022
a(n) is the square of the smallest integer having exactly n divisors (see formula with proof). - Bernard Schott, Oct 01 2022

Crossrefs

Cf. A357450 (similar, but with odd squares divisors).

Programs

  • PARI
    a(n) = my(k=1); while(sumdiv(k, d, issquare(d)) != n, k++); k; \\ Michel Marcus, Jul 15 2019

Formula

From Bernard Schott, Oct 01 2022: (Start)
a(n) = A005179(n)^2.
Proof: Suppose a(n) = Product p_i^(2*e_i), where the p_i are primes. Then the n square divisors are all of the form d = Product p_i^(2*k_i) with 0 <= k_i <= e_i. As a(n) = Product (p_i^e_i)^2 = (Product (p_i^e_i))^2, we get that sqrt(a(n)) = Product (p_i^e_i). This is the prime decomposition of sqrt(a(n)). As there is a bijection between prime factors p_i^(2*k_i) and (p_i^k_i), there is also bijection between square divisors of a(n) and divisors of sqrt(a(n)). We conclude that sqrt(a(n)) is the smallest integer that has exactly n divisors. (End)

A298735 Number of odd squares dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Author

Ilya Gutkovskiy, Jan 25 2018

Keywords

Comments

The smallest integer with exactly m odd square divisors is A357450(m). - Bernard Schott, Oct 03 2022

Examples

			a(81) = 3 because 81 has 5 divisors {1, 3, 9, 27, 81} among which 3 are odd squares {1, 9, 81}.
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; Rest[CoefficientList[Series[Sum[x^(2 k - 1)^2/(1 - x^(2 k - 1)^2), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Length[Select[Divisors[n], IntegerQ[Sqrt[#]] && OddQ[#] &]]; Table[a[n], {n, 1, 105}]
    f[2, e_] := 1; f[p_, e_] := Floor[e/2] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n)=factorback(apply(e->e\2+1, factor(n/2^valuation(n,2))[, 2])) \\ Rémy Sigrist, Jan 26 2018

Formula

G.f.: Sum_{k>=1} x^((2*k-1)^2)/(1 - x^((2*k-1)^2)).
Multiplicative with a(2^e) = 1 and a(p^e) = floor(e/2) + 1 for p > 2. - Amiram Eldar, Sep 11 2020
a(n) = A046951(4*n) - A046951(n) = A046951(A000265(n)). - Velin Yanev, Antti Karttunen, Dec 06 2021
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/8 (A111003). - Amiram Eldar, Sep 25 2022

Extensions

Keyword mult added by Rémy Sigrist, Jan 26 2018

A358252 a(n) is the least number with exactly n non-unitary square divisors.

Original entry on oeis.org

1, 8, 32, 128, 288, 864, 1152, 2592, 4608, 13824, 10368, 20736, 28800, 41472, 64800, 279936, 115200, 331776, 345600, 663552, 259200, 1679616, 518400, 1620000, 1166400, 4860000, 1036800, 17915904, 2073600, 15552000, 6998400, 26873856, 4147200, 53747712, 8294400
Offset: 0

Author

Amiram Eldar, Nov 05 2022

Keywords

Comments

a(n) is the least number k such that A056626(k) = n.
Since A056626(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.

Examples

			a(1) = 8 since 8 is the least number that has exactly one non-unitary square divisor, 4.
		

Crossrefs

Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square).

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[21, 10^6]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + floor(f[i,2]/2)) - 2^sum(i = 1, #f~, 1 - f[i,2]%2);}
    lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};

A358262 a(n) is the least number with exactly n noninfinitary square divisors.

Original entry on oeis.org

1, 16, 144, 256, 3600, 1296, 2304, 65536, 129600, 16777216, 32400, 20736, 57600, 331776, 589824, 4294967296, 6350400, 1099511627776, 150994944, 810000, 1587600, 1679616, 518400, 5308416, 2822400, 84934656, 8294400, 26873856, 14745600, 21743271936, 38654705664
Offset: 0

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

a(n) is the least number k such that A358261(k) = n.
Since A358261(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.

Examples

			a(1) = 16 since 16 is the least number with exactly one noninfinitary divisor, 4.
		

Crossrefs

Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square), A358252 (non-unitary square).

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[15, 2*10^7]
  • PARI
    s(n) = {my(f = factor(n));  prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
    lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};

A361418 a(n) is the least number with exactly n noninfinitary divisors.

Original entry on oeis.org

1, 4, 12, 16, 60, 36, 48, 256, 360, 4096, 180, 144, 240, 576, 768, 65536, 2520, 1048576, 12288, 900, 1260, 1296, 720, 2304, 1680, 9216, 2880, 5184, 3840, 147456, 196608, 36864, 27720, 46656, 3145728, 4398046511104, 61440, 3600, 6300, 18014398509481984, 10080, 20736
Offset: 0

Author

Amiram Eldar, Mar 11 2023

Keywords

Comments

a(n) is the least number k such that A348341(k) = n.
Since A348341(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.

Examples

			a(1) = 4 since 4 is the least number with exactly one noninfinitary divisor, 2.
		

Crossrefs

Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square), A358252 (non-unitary square).

Programs

  • Mathematica
    f[1] = 0; f[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]];
    seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s];
    seq[35, 10^7]
  • PARI
    s(n) = {my(f = factor(n)); numdiv(f) - prod(i = 1, #f~, 2^hammingweight(f[i,2]));}
    lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};
Showing 1-5 of 5 results.