A298854 Characteristic polynomials of Jacobi coordinates. Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 1, 1, 2, 3, 2, 6, 11, 11, 6, 24, 50, 61, 50, 24, 120, 274, 379, 379, 274, 120, 720, 1764, 2668, 3023, 2668, 1764, 720, 5040, 13068, 21160, 26193, 26193, 21160, 13068, 5040, 40320, 109584, 187388, 248092, 270961, 248092, 187388, 109584, 40320, 362880, 1026576, 1836396, 2565080, 2995125, 2995125, 2565080, 1836396, 1026576, 362880
Offset: 0
Examples
For n = 3, the polynomial is 6*x^3 + 11*x^2 + 11*x + 6. The first few polynomials, as a table: [ 1], [ 1, 1], [ 2, 3, 2], [ 6, 11, 11, 6], [ 24, 50, 61, 50, 24], [120, 274, 379, 379, 274, 120]
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<1, n+1, expand( n*(x+1)*b(n-1)-(n-1)^2*x*b(n-2))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): seq(T(n), n=0..10); # Alois P. Heinz, Apr 01 2021
-
Mathematica
P[0] = 1 ; P[1] = x + 1; P[n_] := P[n] = n (x + 1) P[n - 1] - (n - 1)^2 x P[n - 2]; Table[CoefficientList[P[n], x], {n, 0, 9}] // Flatten (* Jean-François Alcover, Mar 16 2020 *)
-
Sage
@cached_function def poly(n): x = polygen(ZZ, 'x') if n < 0: return x.parent().zero() elif n == 0: return x.parent().one() else: return n * (x + 1) * poly(n - 1) - (n - 1)**2 * x * poly(n - 2) A298854_row = lambda n: list(poly(n)) for n in (0..7): print(A298854_row(n))
Formula
P(0)=1 and P(n) = n * (x + 1) * P(n - 1) - (n - 1)^2 * x * P(n - 2).
Comments