cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A299195 Number of ordered ways of writing n^4 as a sum of n fourth powers of positive integers.

Original entry on oeis.org

1, 1, 0, 0, 0, 30, 6, 0, 0, 0, 360, 157080, 0, 12586860, 0, 714233520, 579379361, 48062263014, 46026944529624, 759085890469938, 170947379002578290, 3331302954541376850, 479526242126281889924, 11322897238957194004884, 1341983461418984670506352, 31585668052999315295625900
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2018

Keywords

Examples

			a(6) = 6 because we have [256, 256, 256, 256, 256, 16], [256, 256, 256, 256, 16, 256], [256, 256, 256, 16, 256, 256], [256, 256, 16, 256, 256, 256], [256, 16, 256, 256, 256, 256] and [16, 256, 256, 256, 256, 256].
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Coefficient[Sum[x^k^4, {k, n-1}]^n // Expand, x, n^4]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Feb 05 2018 *)

Formula

a(n) = [x^(n^4)] (Sum_{k>=1} x^(k^4))^n.

Extensions

More terms from Alois P. Heinz, Feb 04 2018

A307644 Number of partitions of n^4 into exactly n nonzero fourth powers.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 6, 0, 27, 13, 59, 390, 661, 4933, 9760, 49415, 101967, 341887, 702884, 2209559, 5361004, 15472531, 34165997, 82258594, 193682533, 490404772, 1210929426, 2725005202, 6283337761, 13672859806, 34906926846
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2019

Keywords

Examples

			11^4 =
1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4 + 8^4 + 8^4 =
2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 =
2^4 + 2^4 + 2^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 9^4,
so a(11) = 3.
		

Crossrefs

Extensions

a(20)-a(28) from Vaclav Kotesovec, Apr 20 2019
a(29)-a(37) from Vaclav Kotesovec, Apr 23 2019

A307739 Number of partitions of n^4 into at most n fourth powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 5, 3, 5, 2, 27, 4, 78, 14, 152, 551, 1331, 7377, 15504, 87583, 190028, 768864, 1510305, 5413291, 12221733
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2019

Keywords

Examples

			10^4 =
4^4 + 4^4 + 6^4 + 8^4 + 8^4 =
2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4,
so a(10) = 3.
		

Crossrefs

Programs

  • Python
    from sympy.solvers.diophantine.diophantine import power_representation
    def a(n):
        if n < 2: return 1
        return sum(len(list(power_representation(n**4, 4, j))) for j in range(1, n+1))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Jul 09 2024

Extensions

a(21)-a(27) from Michael S. Branicky, Jul 09 2024
Showing 1-3 of 3 results.