A297323 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j*x^j)^k.
1, 1, 0, 1, -1, 0, 1, -2, -2, 0, 1, -3, -3, -1, 0, 1, -4, -3, 2, -1, 0, 1, -5, -2, 8, 4, 5, 0, 1, -6, 0, 16, 9, 16, 1, 0, 1, -7, 3, 25, 9, 18, -3, 13, 0, 1, -8, 7, 34, 0, 4, -35, 6, 4, 0, 1, -9, 12, 42, -21, -26, -90, -33, -31, 0, 0, 1, -10, 18, 48, -56, -66, -145, -56, -66, -72, 2, 0
Offset: 0
Examples
G.f. of column k: A_k(x) = 1 - k*x + (1/2)*k*(k - 5)*x^2 - (1/6)*k*(k^2 - 15*k + 20)*x^3 + (1/24)*k*(k^3 - 30*k^2 + 155*k - 150)*x^4 - (1/120)*k*(k^4 - 50*k^3 + 575*k^2 - 1750*k + 624)*x^5 + ... Square array begins: 1, 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, -5, ... 0, -2, -3, -3, -2, 0, ... 0, -1, 2, 8, 16, 25, ... 0, -1, 4, 9, 9, 0, ... 0, 5, 16, 18, 4, -26, ...
Crossrefs
Columns k=0..32 give A000007, A022661, A022662, A022663, A022664, A022665, A022666, A022667, A022668, A022669, A022670, A022671, A022672, A022673, A022674, A022675, A022676, A022677, A022678, A022679, A022680, A022681, A022682, A022683, A022684, A022685, A022686, A022687, A022688, A022689, A022690, A022691, A022692.
Main diagonal gives A297324.
Antidiagonal sums give A299209.
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[Product[(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
-
PARI
first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, (1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017
Formula
G.f. of column k: Product_{j>=1} (1 - j*x^j)^k.