cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A297325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, -2, 0, 1, -4, 0, -2, 2, 0, 1, -5, 2, -1, 9, -1, 0, 1, -6, 5, 0, 18, -2, 4, 0, 1, -7, 9, 0, 27, -12, 10, -1, 0, 1, -8, 14, -2, 35, -36, 11, -16, 18, 0, 1, -9, 20, -7, 42, -76, 14, -54, 38, -22, 0, 1, -10, 27, -16, 49, -132, 35, -104, 84, -98, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 - k*x + (1/2)*k*(k - 3)*x^2 - (1/6)*k*(k^2 - 9*k + 20)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 107*k - 42)*x^4 - (1/120)*k*(k^4 - 30*k^3 + 335*k^2 - 810*k + 624)*x^5 + ...
Square array begins:
  1,  1,  1,   1,   1,   1,  ...
  0, -1, -2,  -3,  -4,  -5,  ...
  0, -1, -1,   0,   2,   5,  ...
  0, -2, -2,  -1,   0,   0,  ...
  0,  2,  9,  18,  27,  35,  ...
  0, -1, -2, -12, -36, -76,  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, -k*add(add(
          (-d)^(1+j/d), d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Apr 20 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} 1/(1 + j*x^j)^k.

A299208 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)).

Original entry on oeis.org

1, 1, 0, -1, -2, -1, 1, 3, 3, 1, -3, -6, -5, 1, 9, 12, 5, -9, -20, -18, 1, 26, 38, 21, -21, -61, -62, -9, 72, 120, 81, -44, -177, -205, -64, 186, 366, 293, -63, -496, -657, -304, 445, 1084, 1014, 33, -1341, -2053, -1238, 959, 3132, 3378, 770, -3474, -6260, -4619, 1656, 8809, 10929, 4306, -8520
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A081362(k-1)*a(n-k).

A299211 Expansion of 1/(1 - x*Product_{k>=1} (1 - x^k)^k).

Original entry on oeis.org

1, 1, 0, -3, -6, -4, 12, 39, 52, -9, -186, -392, -285, 610, 2291, 3200, -150, -10626, -23487, -18841, 32957, 134848, 198246, 13961, -605248, -1409604, -1234474, 1744213, 7898753, 12209679, 2161666, -34344627, -84393284, -79993042, 90692470, 461463974, 749309529, 207447895, -1939084232
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 05 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    S:= series(1/(1-x*mul((1-x^k)^k,k=1..N)),x,N+1):
    seq(coeff(S,x,i),i=0..N); # Robert Israel, Feb 05 2023
  • Mathematica
    nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 - x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 - x^k)^k).
a(0) = 1; a(n) = Sum_{k=1..n} A073592(k-1)*a(n-k).

A299209 Expansion of 1/(1 - x*Product_{k>=1} (1 - k*x^k)).

Original entry on oeis.org

1, 1, 0, -3, -6, -5, 11, 37, 59, 13, -155, -402, -415, 263, 1981, 3748, 2289, -6643, -22642, -31322, -187, 99040, 229410, 216823, -230029, -1223267, -2097812, -955237, 4468902, 13393758, 16752461, -3891704, -62382597, -131974181, -106680562, 173622424, 741553622, 1163057561, 329176545
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 38; CoefficientList[Series[1/(1 - x Product[1 - k x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 - k*x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A022661(k-1)*a(n-k).

A299212 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).

Original entry on oeis.org

1, 1, 0, -2, -5, -4, 4, 21, 35, 23, -47, -165, -239, -78, 479, 1273, 1508, -138, -4429, -9451, -8845, 6207, 37937, 67123, 45144, -83355, -308078, -455109, -166872, 873799, 2393041, 2916869, -73472, -8133572, -17828640, -17294146, 10383571, 70275162, 127401305, 90368779, -147825714
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).
a(0) = 1; a(n) = Sum_{k=1..n} A255528(k-1)*a(n-k).
Showing 1-5 of 5 results.