cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299256 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).

Original entry on oeis.org

1, 6, 18, 40, 72, 112, 162, 220, 288, 364, 450, 544, 648, 760, 882, 1012, 1152, 1300, 1458, 1624, 1800, 1984, 2178, 2380, 2592, 2812, 3042, 3280, 3528, 3784, 4050, 4324, 4608, 4900, 5202, 5512, 5832, 6160, 6498, 6844, 7200, 7564, 7938, 8320, 8712, 9112, 9522, 9940, 10368, 10804, 11250, 11704
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #18.

Crossrefs

Cf. A008579.
For partial sums see A299262.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • GAP
    a:=[18,40,72,112];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; Concatenation([1,6],a); # Muniru A Asiru, Oct 26 2018
  • Magma
    [1, 6] cat [9*n^2 div 2: n in [2..50]]; // Vincenzo Librandi, Oct 26 2018
    
  • Maple
    seq(coeff(series((1+2*x)*(x^4-2*x^3-2*x^2-2*x-1)/((x-1)^3*(1+x)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    Join[{1, 6}, LinearRecurrence[{2, 0, -2, 1}, {18, 40, 72, 112}, 50]] (* Vincenzo Librandi, Oct 26 2018 *)
  • PARI
    Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 09 2018
    

Formula

G.f.: (1 + 2*x)*(x^4 - 2*x^3 - 2*x^2 - 2*x - 1) / ((x - 1)^3*(x + 1)).
From Colin Barker, Feb 09 2018: (Start)
a(n) = 9*n^2 / 2 for n>1.
a(n) = (9*n^2 - 1) / 2 for n>1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. (End)
E.g.f.: (2 + 4*x + 9*x*(x + 1)*cosh(x) + (9*x^2 + 9*x - 1)*sinh(x))/2. - Stefano Spezia, Mar 14 2024