cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A299613 Decimal expansion of 2*W(1), where W is the Lambert W function (or PowerLog); see Comments.

Original entry on oeis.org

1, 1, 3, 4, 2, 8, 6, 5, 8, 0, 8, 1, 9, 5, 6, 7, 7, 4, 5, 9, 9, 9, 9, 3, 7, 3, 2, 4, 4, 2, 0, 7, 1, 1, 0, 9, 9, 5, 0, 7, 6, 3, 1, 5, 7, 4, 3, 7, 3, 0, 2, 5, 0, 1, 6, 2, 7, 0, 2, 6, 2, 1, 5, 8, 4, 4, 6, 0, 9, 1, 5, 8, 6, 1, 7, 3, 3, 6, 9, 1, 3, 3, 3, 8, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2018

Keywords

Comments

The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y*(1/W(x) + 1/W(y))) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(1) = W(2/W(1)) = -2*log(W(1)).
Guide to related constants:
--------------------------------------------
x y W(x) + W(y) e^(W(x) + W(y))
--------------------------------------------
e e 2 exactly e^2 exactly

Examples

			2*W(1) = 1.13428658081956774599993...
		

Crossrefs

Programs

  • Mathematica
    w[x_] := ProductLog[x]; x = 1; y = 1; u = N[w[x] + w[y], 100]
    RealDigits[u, 10][[1]]  (* A299613 *)
    RealDigits[2 ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, Mar 02 2018 *)
  • PARI
    2*lambertw(1) \\ G. C. Greubel, Mar 07 2018

Formula

Equals 2*A030178.

A299619 Decimal expansion of e^(W(1) + W(1/e)) = (1/e)/(W(1)*W(1/e)), where W is the Lambert W function (or PowerLog); see Comments.

Original entry on oeis.org

2, 3, 2, 9, 3, 9, 3, 2, 6, 6, 8, 4, 2, 7, 9, 3, 2, 2, 4, 8, 5, 7, 6, 3, 0, 9, 1, 5, 6, 2, 7, 5, 2, 1, 9, 4, 3, 5, 7, 7, 4, 3, 9, 1, 9, 8, 0, 2, 3, 3, 3, 1, 5, 1, 3, 4, 6, 7, 1, 4, 9, 2, 5, 2, 4, 7, 2, 6, 0, 2, 7, 8, 6, 1, 6, 3, 1, 0, 9, 1, 0, 5, 1, 1, 6, 6
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2018

Keywords

Comments

The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(W(1) + W(1/e)) = (1/e)/(W(1)*W(1/e)). See A299613 for a guide to related constants.

Examples

			e^(W(1) + W(1/e)) = 2.3293932668427932248576309...
		

Crossrefs

Programs

  • Mathematica
    w[x_] := ProductLog[x]; x = 1; y = 1/E;
    N[E^(w[x] + w[y]), 130]   (* A299619 *)
    RealDigits[1/(E*LambertW[1]*LambertW[1/E]), 10, 100][[1]] (* G. C. Greubel, Mar 03 2018 *)
  • PARI
    exp(-1)/(lambertw(1)*lambertw(exp(-1))) \\ G. C. Greubel, Mar 03 2018

A375596 Decimal expansion of 1/(1 - W(1/e)), where W is the Lambert W function.

Original entry on oeis.org

1, 3, 8, 5, 9, 3, 3, 2, 7, 5, 9, 9, 8, 1, 9, 4, 2, 5, 3, 8, 6, 0, 6, 2, 1, 8, 1, 4, 8, 8, 2, 5, 1, 5, 8, 6, 0, 6, 4, 5, 1, 3, 2, 7, 9, 6, 5, 7, 0, 5, 8, 1, 7, 7, 9, 1, 6, 7, 6, 7, 1, 4, 2, 5, 2, 7, 8, 6, 1, 8, 1, 9, 7, 2, 3, 1, 0, 5, 1, 8, 1, 9, 3, 3, 3, 3, 9, 5, 2, 6, 7, 0, 6, 5, 4, 2, 6, 5, 2, 0
Offset: 1

Views

Author

Stefano Spezia, Aug 20 2024

Keywords

Examples

			1.38593327599819425386062181488251586064513...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/(1-ProductLog[1/E]),10,100][[1]]
  • PARI
    1/(1-lambertw(1/exp(1))) \\ Michel Marcus, Aug 20 2024

Formula

Equals 1/(1 - A202357).
Showing 1-3 of 3 results.