cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299960 a(n) = (4^(2*n+1) + 1) / 5.

Original entry on oeis.org

1, 13, 205, 3277, 52429, 838861, 13421773, 214748365, 3435973837, 54975581389, 879609302221, 14073748835533, 225179981368525, 3602879701896397, 57646075230342349, 922337203685477581, 14757395258967641293, 236118324143482260685, 3777893186295716170957
Offset: 0

Views

Author

M. F. Hasler, Feb 22 2018

Keywords

Comments

It is easily seen that 4^(2n+1)+1 is divisible by 5 for all n, since 4 = -1 (mod 5). For even powers this does not hold.
The aerated sequence 1, 0, 13, 0, 205, 0, 3277, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = -5^2, Q = 4 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A100706. - Peter Bala, Aug 28 2019
Let G be a sequence satisfying G(i) = 2*G(i-1) + G(i-2) - 2*G(i-3) for arbitrary integers i and without regard to the initial values of G. Then a(n) = (G(i)*2^(4*n+2) + G(i+8*n+4))/(5*G(i+4*n+2)) as long as G(i+4*n+2) != 0. - Klaus Purath, Feb 02 2021
Ch. Gerbr asks (personal comm.) whether we can prove that 13 is the only prime in this sequence. We can prove divisibility conditions for many residue classes of the index n (cf. formulas), but have not yet found a complete covering set. - M. F. Hasler, Jan 07 2025

Examples

			For n = 0, a(0) = (4^1+1)/5 = 5/5 = 1.
For n = 1, a(1) = (4^3+1)/5 = 65/5 = 13.
		

Crossrefs

Cf. A299959 for the smallest prime factor.

Programs

Formula

a(n) = A052539(2*n+1)/5 = A015521(2*n+1) = A014985(2*n+1) = A007910(4*n+1) = A007909(4*n+1) = A207262(n+1)/5.
O.g.f.: (1 - 4*x)/(1 - 17*x + 16*x^2). - Peter Bala, Aug 28 2019
a(n) = 17*a(n-1) - 16*a(n-2). - Wesley Ivan Hurt, Oct 02 2020
From Klaus Purath, Feb 02 2021: (Start)
a(n) = (2^(4*n+2)+1)/5.
a(n) = (A061654(n) + A001025(n))/2.
a(n) = A091881(n+1) + 7*A131865(n-1) for n > 0.
(End)
E.g.f.: (exp(x) + 4*exp(16*x))/5. - Stefano Spezia, Feb 02 2021
We have d | a(n) for all n in R, for the following pairs (d, R) of divisors d and residue classes R: (13, 1 + 3Z), (5, 2 + 5Z), (29, 3 + 7Z), (397, 5 + 11Z),
(53, 6 + 13Z), (137, 8 + 17Z), (229, 9 + 19Z), (277, 11 + 23Z),
(107367629, 14 + 29Z), (5581, 15 + 31Z), (149, 18 + 27Z), (10169, 20 + 41Z),
(173, 21 + 43Z), (3761, 23 + 47Z), (15358129, 26 + 53Z), (1181, 29 + 59Z),
(733, 30 + 61Z), (269, 33 + 67Z), (569, 35 + 71Z),(293, 36 + 73Z), (317, 39 + 79Z),
(997, 41 + 83Z), (1069, 44 + 89Z), (389, 48 + 97Z), (809, 50 + 101Z),
(41201, 51 + 103Z), (857, 53 + 107Z), (5669, 54 + 109Z), (58309, 56 + 113Z),
(509, 63 + 127Z), (269665073, 65 + 131Z), (189061, 68 + 137Z), (557, 69 + 139Z),
(1789, 74 + 149Z), (653, 81 + 163Z), (9413, 90 + 181Z), (3821, 95 + 191Z),
(773, 96 + 193Z), (4729, 98 + 197Z), (797, 99 + 199Z), ... - M. F. Hasler, Jan 07 2025