Original entry on oeis.org
1, 111, 11111, 1111111, 111111111, 11111111111, 1111111111111, 111111111111111, 11111111111111111, 1111111111111111111, 111111111111111111111, 11111111111111111111111
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
seq((10^(2*n+1) - 1)/9,n=0..15); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
-
Table[(10^(2*n + 1) - 1)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
-
a(n) = (10^(2*n + 1) - 1)/9; \\ Michel Marcus, Mar 12 2023
-
def A100706(n): return (10**((n<<1)+1)-1)//9 # Chai Wah Wu, Nov 04 2022
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
A207262
a(n) = 2^(4n - 2) + 1.
Original entry on oeis.org
5, 65, 1025, 16385, 262145, 4194305, 67108865, 1073741825, 17179869185, 274877906945, 4398046511105, 70368744177665, 1125899906842625, 18014398509481985, 288230376151711745, 4611686018427387905, 73786976294838206465, 1180591620717411303425, 18889465931478580854785, 302231454903657293676545
Offset: 1
- David Wells, Prime Numbers: The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons (2005) p. 15
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- FactorDB, Factorizations of 2^(4*n-2)+1
- P. H. Fuss, Correspondance math. et physique, 1 (1843) p. 145.
- Primenumbers Yahoo Group, Aurifeuille and factoring, search results.
- Eric Weisstein's World of Mathematics, Aurifeuillean Factorization.
- Yahoo Groups, Aurifeuille and factoring
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
A229747
Largest prime factor of 4^(2*n+1)+1.
Original entry on oeis.org
5, 13, 41, 113, 109, 2113, 1613, 1321, 26317, 525313, 14449, 30269, 268501, 279073, 536903681, 384773, 4327489, 47392381, 231769777, 21841, 43249589, 1759217765581, 29247661, 140737471578113, 4981857697937, 1326700741, 1801439824104653, 3630105520141
Offset: 0
For n=7, 4^(2*n+1)+1 = 1073741825 = 5*5*13*41*61*1321. So a(7)=1321.
-
Table[FactorInteger[4^(2n+1)+1][[-1,1]],{n,0,30}] (* Harvey P. Dale, Mar 10 2018 *)
-
a(n) = {
f=factor(2^(2*n+1)-2^(n+1)+1);
g=factor(2^(2*n+1)+2^(n+1)+1);
max(f[matsize(f)[1],1], g[matsize(g)[1],1])
}
A299959
Least prime factor of (4^(2n+1)+1)/5, a(0) = 1.
Original entry on oeis.org
1, 13, 5, 29, 13, 397, 53, 5, 137, 229, 13, 277, 5, 13, 107367629, 5581, 13, 5, 149, 13, 10169, 173, 5, 3761, 29, 13, 15358129, 5, 13, 1181, 733, 13, 5, 269, 13, 569, 293, 5, 29, 317, 13, 997, 5, 13, 1069, 29, 13, 5, 389, 13, 809, 41201, 5, 857, 5669, 13, 58309, 5, 13, 29, 397, 13, 5, 509, 13
Offset: 0
For n = 0, A299960(0) = (4^1+1)/5 = 5/5 = 1, therefore we let a(0) = 1.
For n = 1, A299960(1) = (4^3+1)/5 = 65/5 = 13 is prime, therefore a(1) = 13.
For n = 2, A299960(2) = (4^5+1)/5 = 1025/5 = 205 = 5*41, therefore a(2) = 5.
A340441
Square array, read by ascending antidiagonals, where row n gives all odd solutions k > 1 and n > 0 to A000120(2*n+1) = A000120((2*n+1)*k), A000120 is the Hamming weight.
Original entry on oeis.org
3, 13, 11, 3, 205, 43, 57, 5, 3277, 171, 35, 3641, 7, 52429, 683, 21, 47, 233017, 19, 838861, 2731, 3, 79, 99, 14913081, 23, 13421773, 10923, 241, 5, 197, 187, 954437177, 37, 214748365, 43691, 7, 61681, 7, 325, 419, 61083979321, 39, 3435973837, 174763
Offset: 1
Five initial terms of rows 1-5 are listed below:
1: 3, 11, 43, 171, 683, ...
2: 13, 205, 3277, 52429, 838861, ...
3: 3, 5, 7, 19, 23, ...
4: 57, 3641, 233017, 14913081, 954437177, ...
5: 35, 47, 99, 187, 419, ...
T(3,4) = 19 because: (3*2+1) in binary is 111 and (3*2+1)*19 = 133 in binary is 10000101, both have 3 bits set to 1.
A362783
Square array A(n,k) = (n^(2*k + 1) + 1)/(n + 1), n >= 0, k >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 7, 1, 1, 1, 43, 61, 13, 1, 1, 1, 171, 547, 205, 21, 1, 1, 1, 683, 4921, 3277, 521, 31, 1, 1, 1, 2731, 44287, 52429, 13021, 1111, 43, 1, 1, 1, 10923, 398581, 838861, 325521, 39991, 2101, 57, 1, 1, 1, 43691, 3587227, 13421773, 8138021, 1439671
Offset: 0
Array begins:
=====================================================================
n/k | 0 1 2 3 4 5 6 ...
----+----------------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 3 11 43 171 683 2731 ...
3 | 1 7 61 547 4921 44287 398581 ...
4 | 1 13 205 3277 52429 838861 13421773 ...
5 | 1 21 521 13021 325521 8138021 203450521 ...
6 | 1 31 1111 39991 1439671 51828151 1865813431 ...
...
-
/* as array */ [[&+[(-n)^j: j in [0..2*k]]: k in [0..6]]: n in [0..6]]; // Juri-Stepan Gerasimov, May 06 2023
-
A(n,k) = (n^(2*k + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
A318236
a(n) = (3*2^(4*n+3) + 1)/5.
Original entry on oeis.org
5, 77, 1229, 19661, 314573, 5033165, 80530637, 1288490189, 20615843021, 329853488333, 5277655813325, 84442493013197, 1351079888211149, 21617278211378381, 345876451382054093, 5534023222112865485, 88544371553805847757, 1416709944860893564109, 22667359117774297025741
Offset: 0
The smallest solution to 5*x == 1 (mod 8) is x = (3*2^3 + 1)/5 = 5.
The smallest solution to 5*x == 1 (mod 128) is x = (3*2^7 + 1)/5 = 77.
A007583 gives the smallest positive multiplicative inverse of 3 modulo 2^(2*n) and 2^(2*n+1),
A299960 gives the smallest positive multiplicative inverse of 5 modulo 2^(4*n), 2^(4*n+1) and 2^(4*n+2).
-
[(3*2^(4*n + 3) + 1)/5: n in [0..20]]; // Vincenzo Librandi, Aug 24 2018
-
Table[(3 2^(4 n + 3) + 1) / 5, {n, 0, 20}] (* Vincenzo Librandi, Aug 24 2018 *)
LinearRecurrence[{17,-16},{5,77},20] (* Harvey P. Dale, Sep 25 2020 *)
-
a(n) = (3*2^(4*n + 3) + 1)/5
-
def A318236(n): return (3*(1<<(n<<2)+3)+1)//5 # Chai Wah Wu, Jul 29 2022
A340547
Square array, read by ascending antidiagonals, where row n gives all solutions n > 0 to A000120(n+1) = A000120((n+1)*k), A000120 is the Hamming weight.
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 4, 4, 16, 1, 2, 4, 8, 6, 32, 1, 2, 3, 8, 16, 8, 64, 1, 2, 3, 4, 13, 32, 11, 128, 1, 2, 4, 4, 6, 16, 64, 12, 256, 1, 2, 2, 8, 5, 8, 26, 128, 16, 512, 1, 2, 4, 8, 16, 6, 11, 32, 256, 22, 1024
Offset: 1
Eight initial terms of rows 1-8 are listed below:
1: 1, 2, 4, 8, 16, 32, 64, 128, ...
2: 1, 2, 3, 4, 6, 8, 11, 12, ...
3: 1, 2, 4, 8, 16, 32, 64, 128, ...
4: 1, 2, 4, 8, 13, 16, 26, 32, ...
5: 1, 2, 3, 4, 6, 8, 11, 12, ...
6: 1, 2, 3, 4, 5, 6, 7, 8, ...
7: 1, 2, 4, 8, 16, 32, 64, 128, ...
8: 1, 2, 4, 8, 16, 32, 57, 64, ...
T(3,4) = 8 because: (3+1) in binary is 100 and (3*1)*8 = 32 in binary is 100000, both have 1 bit set to 1.
A360967
Array T(n,m) = (2^(m*(2*n+1))+1)/(2^m+1) read by antidiagonals.
Original entry on oeis.org
3, 13, 11, 57, 205, 43, 241, 3641, 3277, 171, 993, 61681, 233017, 52429, 683, 4033, 1016801, 15790321, 14913081, 838861, 2731, 16257, 16519105, 1041204193, 4042322161, 954437177, 13421773, 10923, 65281, 266354561, 67662254017, 1066193093601, 1034834473201, 61083979321, 214748365
Offset: 1
The array starts in row n=1 and column n=1 as
3 13 57 241
11 205 3641 61681
43 3277 233017 15790321
171 52429 14913081 4042322161
Showing 1-9 of 9 results.
Comments